Advertisement

JETP Letters

, Volume 100, Issue 9, pp 576–580 | Cite as

Localized electronic states in branching polyacetylene molecules

  • A. A. Gorbatsevich
  • M. N. Zhuravlev
Article

Abstract

The electronic structure of a Y-splitter based on trans-polyacetylene molecular chains is calculated analytically in the framework of the tight-binding approximation and numerically by ab initio simulations using the density functional method. It is shown that, depending on the configuration of the valence π orbitals, localized states of either soliton type (with an energy level in the middle of the band gap) or polaron type (with a pair of energy levels lying symmetrically in the band gap) are formed at the branching point.

Keywords

Soliton JETP Letter Zero Mode Valence Bond Polyacetylene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Heeger, Rev. Mod. Phys. 73, 681 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    R. Friend, Nature 441, 37 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    T. Aida, E. W. Meijer, and S. I. Stupp, Science 335, 813 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    J. A. Pople and S. H. Walmsley, Mol. Phys. 5, 15 (1962).ADSCrossRefGoogle Scholar
  5. 5.
    S. A. Brazovskii, JETP Lett. 28, 606 (1978).ADSGoogle Scholar
  6. 6.
    W.-P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).ADSCrossRefGoogle Scholar
  7. 7.
    S. A. Brazovskii and N. N. Kirova, JETP Lett. 33, 4 (1981).ADSGoogle Scholar
  8. 8.
    A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W.-P. Su, Rev. Mod. Phys. 60, 781 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    A. O. Patil, A. J. Heeger, and F. Wudl, Chem. Rev. 88, 183 (1988).CrossRefGoogle Scholar
  10. 10.
    V. M. Kobryanskii, T. A. Kulakov, and D. Yu. Parashchuk, JETP Lett. 57, 543 (1993).ADSGoogle Scholar
  11. 11.
    F. L. Carter, Physica D 10, 185 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    A. A. Gorbatsevich and M. N. Zhuravlev, JETP Lett. 90, 582 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    R. Jackiw and C. Rabi, Phys. Rev. D 13, 3398 (1976).ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ch. Ho Choi, M. Kertesz, and A. Karpfen, J. Chem. Phys. 107, 6712 (1997).ADSCrossRefGoogle Scholar
  15. 15.
    D. Jacquemin, E. A. Perpéte, I. Ciofini, and C. Adamo, Chem. Phys. Lett. 405, 376 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    Y. Zhu, Sh. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruof, Science 332, 1537 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    Yu. Li, Z. Li, and P. K. Shen, Adv. Mater. 25, 2474 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.National Research University MIETZelenogradRussia

Personalised recommendations