Advertisement

JETP Letters

, Volume 100, Issue 8, pp 487–490 | Cite as

Kazama-Suzuki models of N = 2 superconformal field theory and Manin triples

  • S. E. ParkhomenkoEmail author
Fields, Particles, and Nuclei

Abstract

Kazama-Suzuki coset models is an interesting class of N = 2 supersymmetric models of conformal field theory which are used to build realistic models of superstring in 4 dimensions. We formulate Kazama-Suzuki construction of N = 2 superconformal coset models using more general language of Manin triples and represent the corresponding N = 2 Virasoro superalgebra currents in explicit form. A correspondence between the Kazama-Suzuki models and Poisson homogeneous spaces is also established.

Keywords

Central Charge JETP Letter Conformal Field Theory Twisted Sector Coset Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Gepner, Nucl. Phys. B 296, 757 (1987).ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    Y. Kazama and H. Suzuki, Mod. Phys. Lett. A 4, 235 (1989); Phys. Lett. B 216, 112 (1989); Nucl. Phys. B 321, 232 (1989).ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    P. Goddard, A. Kent, and D. Olive, Phys. Lett. 152, 88 (1985).CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    P. Spindel, A. Sevrin, W. Troost, and A. van Proeyen, Nucl. Phys. B 308, 662 (1988); Nucl. Phys. B 311, 465 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    S. E. Parkhomenko, J. Exp. Theor. Phys. 102, 3 (1992).Google Scholar
  6. 6.
    E. Getzler, arXiv:hep-th/9307041.Google Scholar
  7. 7.
    V. G. Drinfeld, in Proceedings of the International Congress of Mathematicians, Berkeley, California, USA, August 3–11, 1986 (Amer. Math. Soc., Providence, RI, 1987), p. 798.Google Scholar
  8. 8.
    C. Klimcik, Nucl. Phys. Proc. Suppl. 46, 116 (1996); arXiv:hep-th/9509095.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    S. E. Parkhomenko, Mod. Phys. Lett. A 13, 1041 (1998); arXiv:hep-th/9710037.ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    C. Klimcik and S. Parkhomenko, Phys. Lett. B 463, 195 (1999); arXiv:hep-th/9906163.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    S. E. Parkhomenko, Mod. Phys. Lett. A 11, 445 (1996); arXiv:hep-th/9503071.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    V. G. Drinfeld, Theor. Math. Phys. 95, 226 (1993).CrossRefMathSciNetGoogle Scholar
  13. 13.
    M. A. Semenov-Tian-Shansky, Publ. RIMS Kyoto Univ. 21, 1237 (1985).CrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations