JETP Letters

, Volume 100, Issue 8, pp 530–534 | Cite as

Allowable number of plasmons in nanoparticle

  • I. A. Fedorov
  • V. M. Parfenyev
  • S. S. Vergeles
  • G. T. Tartakovsky
  • A. K. Sarychev
Condensed Matter


We address thermal and strength phenomena occurring in metal nanoparticles due to excitation of surface plasmons. The temperature of the nanoparticle is found as a function of the plasmon population, allowing for the Kapitza heat boundary resistance and temperature dependencies of the host dielectric heat conductivity and the metal electrical conductivity. The latter is shown to result in the positive thermal feedback which leads to appearance of the maximum possible number of plasmon quanta in the steady-state regime. In the pulsed regime the number of plasmon quanta is shown to be restricted from above also by the ponderomotive forces, which tend to deform the nanoparticle. Obtained results provide instruments for the heat and strength management in the plasmonic engineering.


JETP Letter Plasmon Mode Ponderomotive Force Dark Mode Dipole Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Bergman and M. I. Stockman, Phys. Rev. Lett. 90, 027402 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    A. Sarychev, G. Shvets, and V. Shalaev, Phys. Rev. E 73, 036609 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    A. Sarychev and G. Tartakovsky, Phys. Rev. B 75, 1 (2007).CrossRefGoogle Scholar
  4. 4.
    R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    M. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Sutee-wong, and U. Wiesner, Nature 460, 1110 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, Nature 466, 735 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    D. K. Gramotnev and S. I. Bozhevolnyi, Nature Photon. 4, 83 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    A. Brolo, Nature Photon. 6, 709 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    R. F. Oulton, Mater. Today 15, 26 (2012).CrossRefGoogle Scholar
  10. 10.
    M. I. Stockman, Opt. Express 19, 22029 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    G. Colas des Francs, S. Derom, R. Vincent, A. Bouhelier, and A. Dereux, Int. J. Opt. 2012, 175162 (2012).Google Scholar
  12. 12.
    J. P. Freedman, J. H. Leach, E. A. Preble, Z. Sitar, R. F. Davis, and J. A. Malen, Sci. Rep. 3, 2963 (2013).ADSGoogle Scholar
  13. 13.
    G. Chen, Phys. Rev. Lett. 86, 2297 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    J. C. Duda, C.-Y. P. Yang, B. M. Foley, R. Cheaito, D. L. Medlin, R. E. Jones, and P. E. Hopkins, Appl. Phys. Lett. 102, 081902 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, ACS Nano 7, 42 (2013).CrossRefGoogle Scholar
  16. 16.
    M. Liu, M. Pelton, and P. Guyot-Sionnest, Phys. Rev. B 79, 035418 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    J.-S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, Nano Lett. 12, 1561 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    O. Yeshchenko, I. Bondarchuk, V. Gurin, I. Dmitruk, and A. V. Kotko, Surf. Sci. 608, 275 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    P. Johnson and R. Christy, Phys. Rev. B 6, 4370 (1972).ADSCrossRefGoogle Scholar
  20. 20.
    T. Castro, R. Reifenberger, E. Choi, and R. Andres, Phys. Rev. B 42, 8548 (1990).ADSCrossRefGoogle Scholar
  21. 21.
    O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, Plasmonics 7, 685 (2012).CrossRefGoogle Scholar
  22. 22.
    P. Jund and R. Jullien, Phys. Rev. B 59, 13707 (1999).ADSCrossRefGoogle Scholar
  23. 23.
    Y.-G. Yoon, R. Car, D. Srolovitz, and S. Scandolo, Phys. Rev. B 70, 012302 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    Y. Martynenko and L. Ognev, Tech. Phys. 50, 1522 (2005).CrossRefGoogle Scholar
  25. 25.
    L. Landau and E. Lifshitz, Statistical Physics, 3rd ed. (Pergamon, Oxford, 1980), p. 1.Google Scholar
  26. 26.
    S. Link, C. Burda, M. Mohamed, B. Nikoobakht, and M. El-Sayed, Phys. Rev. B 61, 6086 (2000).ADSCrossRefGoogle Scholar
  27. 27.
    S. Link, C. Burda, B. Nikoobakht, and M. El-Sayed, Chem. Phys. Lett. 315, 12 (1999).ADSCrossRefGoogle Scholar
  28. 28.
    D. Östling, P. Stampfli, and K. H. Bennemann, Zeitschr. Phys. D 28, 169 (1993).ADSGoogle Scholar
  29. 29.
    L. Landau and E. Lifshits, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, Oxford, 1984).Google Scholar
  30. 30.
    D. Lee, X. Wei, M. Zhao, X. Chen, S. C. Jun, J. Hone, and J. W. Kysar, Model. Simul. Mater. Sci. Eng. 15, 181 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, Phys. Rev. B 87, 054109 (2013).ADSCrossRefGoogle Scholar
  32. 32.
    V. H. Whitley, S. D. McGrane, D. E. Eakins, C. A. Bolme, D. S. Moore, and J. F. Bingert, J. Appl. Phys. 109, 013505 (2011).ADSCrossRefGoogle Scholar
  33. 33.
    L. Condra, J. Svitak, and A. Pense, IEEE Trans. Parts, Hybrids, Packag. 11, 290 (1975).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • I. A. Fedorov
    • 1
    • 2
  • V. M. Parfenyev
    • 1
    • 3
  • S. S. Vergeles
    • 1
    • 3
  • G. T. Tartakovsky
    • 4
  • A. K. Sarychev
    • 5
  1. 1.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia
  2. 2.Russian Quantum CenterMoscowRussia
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  4. 4.Advanced Systems and TechnologiesIrvineUSA
  5. 5.Institute for Theoretical and Applied ElectromagneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations