Advertisement

JETP Letters

, Volume 100, Issue 5, pp 311–318 | Cite as

Novel type of superlattices based on gapless graphene with the alternating Fermi velocity

  • P. V. RatnikovEmail author
  • A. P. Silin
Condensed Matter

Abstract

We study a novel type of graphene-based superlattices formed owing to a periodic modulation of the Fermi surface. Such a modulation is possible for graphene deposited on a striped substrate made of materials with substantially different values of the dc permittivity. Similar superlattices appear also in graphene sheets applied over substrates with a periodic array of parallel grooves. We suggest a model describing such superlattices. Using the transfer-matrix technique, we determine the dispersion relation and calculate the energy spectrum of these superlattices. We also analyze at a qualitative level the current-voltage characteristics of the system under study.

Keywords

Charge Carrier Graphene Sheet JETP Letter Versus Curve Periodic Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Isacsson, L. M. Jonsson, J. M. Kinaret, and M. Jonson, Phys. Rev. B 77, 035423 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    C. Bai and X. Zhang, Phys. Rev. B 76, 075430 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    M. R. Masir, P. Vasilopoulos, A. Matulis, and F. M. Peeters, Phys. Rev. B 77, 235443 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    P. V. Ratnikov, JETP Lett. 90, 469 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    S. E. Savel’ev and A. S. Alexandrov, Phys. Rev. B 84, 035428 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    J.-H. Lee and J. C. Grossman, Phys. Rev. B 84, 113413 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    V. Krueckl and K. Richter, Phys. Rev. B 85, 115433 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    G. Pal, W. Apel, and L. Schweitzer, Phys. Rev. B 85, 235457 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    P. B. Sorokin and L. A. Chernozatonskii, Phys. Usp. 56, 105 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    G. M. Maksimova, E. S. Azarova, A. V. Telezhnikov, and V. A. Burdov, Phys. Rev. B 86, 205422 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    A. V. Kolesnikov, R. Lipperheide, A. P. Silin, and V. Wille, Europhys. Lett. 43, 331 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    E. A. Andryushin, A. P. Silin, and S. A. Vereshchagin, Phys. Low-Dim. Struct. 314, 79 (2000).Google Scholar
  13. 13.
    P. V. Ratnikov and A. P. Silin, Phys. Solid State 52, 1763 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    P. V. Ratnikov and A. P. Silin, J. Exp. Theor. Phys. 114, 512 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    C. Hwang, D. A. Siegel, S.-K. Mo, W. Regan, A. Ismach, Y. Zhang, A. Zettl, and A. Lanzara, Sci. Rep. 2, 590 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    P. V. Ratnikov, JETP Lett. 87, 292 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    A. V. Kolesnikov and A. P. Silin, J. Exp. Theor. Phys. 82, 1145 (1996).ADSGoogle Scholar
  18. 18.
    J. Gonzalez, F. Guinea, and M. A. H. Vozmediano, Nucl. Phys. B 424, 595 (1994).ADSCrossRefGoogle Scholar
  19. 19.
    J. Gonzalez, F. Guinea, and M. A. H. Vozmediano, Phys. Rev. B 59, 2474 (1999).ADSCrossRefGoogle Scholar
  20. 20.
    S. Das Sarma, E. H. Hwang, and W.-K. Tse, Phys. Rev. B 75, 121406(R) (2007).ADSCrossRefGoogle Scholar
  21. 21.
    M. S. Foster and I. L. Aleiner, Phys. Rev. B 77, 195413 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    F. de Juan, A. G. Grushin, and M. A. H. Vozmediano, Phys. Rev. B 82, 125409 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    A. Bostwick, T. Ohta, J. L. McChesney, T. Seyller, K. Horn, and E. Rotenberg, Solid State Commun. 143, 63 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, Nature Phys. 4, 532 (2008).CrossRefGoogle Scholar
  25. 25.
    G. Li, A. Luican, and E. Y. Andrei, Phys. Rev. Lett. 102, 176804 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov, A. A. Zhukov, P. Blake, L. A. Ponomarenko, I. V. Grigorieva, K. S. Novoselov, F. Guinea, and A. K. Geim, Nature Phys. 7, 701 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    J. Chae, S. Jung, A. F. Young, C. R. Dean, L. Wang, Yu. Gao, K. Watanabe, T. Taniguchi, J. Hone, K. L. Shepard, Ph. Kim, N. B. Zhitenev, and J. A. Stroscio, Phys. Rev. Lett. 109, 116802 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    M. R. Geller and W. Kohn, Phys. Rev. Lett. 20, 3103 (1993).ADSCrossRefGoogle Scholar
  29. 29.
    A. V. Kolesnikov and A. P. Silin, Phys. Rev. B 95, 7596 (1999).ADSCrossRefGoogle Scholar
  30. 30.
    J. Callaway, Energy Band Theory (Academic, New York, 1964; Mir, Moscow, 1969).zbMATHGoogle Scholar
  31. 31.
    A. P. Silin and S. V. Shubenkov, Phys. Solid State 40, 1223 (1998).ADSCrossRefGoogle Scholar
  32. 32.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).ADSCrossRefGoogle Scholar
  33. 33.
    N. Vandecasteele, A. Barreiro, M. Lazzeri, A. Bachtold, and F. Mauri, Phys. Rev. B 82, 045416 (2010).ADSCrossRefGoogle Scholar
  34. 34.
    A. P. Silin, Sov. Phys. Usp. 28, 972 (1985).ADSCrossRefGoogle Scholar
  35. 35.
    K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations