JETP Letters

, Volume 100, Issue 5, pp 336–339 | Cite as

On the superconductivity of graphite interfaces

  • P. Esquinazi
  • T. T. Heikkilä
  • Y. V. Lysogorskiy
  • D. A. Tayurskii
  • G. E. Volovik
Condensed Matter


We propose an explanation for the appearance of superconductivity at the interfaces of graphite with Bernal stacking order. A network of line defects with flat bands appears at the interfaces between two slightly twisted graphite structures. Due to the flat band the probability to find high temperature superconductivity at these quasi one-dimensional corridors is strongly enhanced. When the network of superconducting lines is dense it becomes effectively two-dimensional. The model provides an explanation for several reports on the observation of superconductivity up to room temperature in different oriented graphite samples, graphite powders as well as graphite-composite samples published in the past.


Soliton JETP Letter Edge Dislocation Twist Angle Highly Orient Pyrolytic Graphite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Inagaki, New Carbons: Control of Structure and Functions (Elsevier, Amsterdam, 2000).Google Scholar
  2. 2.
    J. Barzola-Quiquia, J.-L. Yao, P. Rödiger, K. Schindler, and P. Esquinazi, Phys. Status Solidi A 205, 2924 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    A. Ballestar, J. Barzola-Quiquia, T. Scheike, and P. Esquinazi, New J. Phys. 15, 023024 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    T. Scheike, W. Böhlmann, P. Esquinazi, J. Barzola-Quiquia, A. Ballestar, and A. Setzer, Adv. Mater. 24, 5826 (2012).CrossRefGoogle Scholar
  5. 5.
    T. Scheike, P. Esquinazi, A. Setzer, and W. Böhlmann, Carbon 59, 140 (2013).CrossRefGoogle Scholar
  6. 6.
    A. Ballestar, PhD (Univ. of Leipzig, 2014); the high resolution TEM pictures were provided by Dr. E. Pipple (Max Planck Inst. Microstructure Physics, Halle, Germany); the lower resolution TEM picture was provided by Dr. W. Böhlmann at the University of Leipzig.Google Scholar
  7. 7.
    J. H. Warner, M. H. Römmeli, T. Gemming, B. Büchner, and G. A. D. Briggs, Nano Lett. 9, 102 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    J. Burgers, Proc. Phys. Soc. 52, 23 (1940).ADSCrossRefGoogle Scholar
  9. 9.
    W. L. Bragg, Proc. Phys. Soc. 52, 105 (1940).ADSCrossRefGoogle Scholar
  10. 10.
    W. T. Read and W. Shockley, Phys. Rev. 78, 275 (1950).ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    J. S. Alden, A. W. Tsen, P. Y. Huang, R. Hovden, L. Brown, J. Park, D. A. Muller, and P. L. McEuen, Proc. Natl. Acad. Sci. 110, 11256 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    P. San-Jose and E. Prada, Phys. Rev. B 88, 121408(R) (2013).ADSCrossRefGoogle Scholar
  13. 13.
    X. Gong and E. J. Mele, Phys. Rev. B 89, 121415 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    R. Bistritzer and A. MacDonald, Proc. Natl. Acad. Sci. 108, 12233 (2011).CrossRefGoogle Scholar
  15. 15.
    I. Brihuega, P. Mallet, H. González-Herrero, G. T. de Laissardière, M. M. Ugeda, L. Magaud, J. M. Gómez-Rodríguez, F. Ynduráin, and J.-Y. Veuillen, Phys. Rev. Lett. 109, 196802 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    M. Flores, E. Cisternas, J. Correa, and P. Vargas, Chem. Phys. 423, 49 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    L.-J. Yin, J.-B. Qiao, W.-X. Wang, Z.-D. Chu, K. F. Zhang, R.-F. Dou, C. L. Gao, J.-F. Jia, J.-C. Nie, and L. He, Phys. Rev. B 89, 205410 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    G. E. Volovik, Quantum Phase Transitions from Topology in Momentum Space, Springer Lecture Notes in Physics, Vol. 718 (Springer, Berlin, 2007), p. 31.Google Scholar
  20. 20.
    J. W. McClure, Phys. Rev. 108, 612 (1957).ADSCrossRefGoogle Scholar
  21. 21.
    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    Y. Kopnin and M. Salomaa, Phys. Rev. B 44, 9667 (1991).ADSCrossRefGoogle Scholar
  25. 25.
    G. Volovik, JETP Lett. 59, 830 (1994).ADSGoogle Scholar
  26. 26.
    G. Volovik, JETP Lett. 70, 609 (1999).ADSCrossRefGoogle Scholar
  27. 27.
    L. Feng, X. Lin, L. Meng, J.-C. Nie, J. Ni, and L. He, Appl. Phys. Lett. 101, 113113 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    T. Heikkilä, N. B. Kopnin, and G. Volovik, JETP Lett. 94, 233 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    N. B. Kopnin, M. Ijäs, A. Harju, and T. T. Heikkilä, Phys. Rev. B 87, 140503 (2013).ADSCrossRefGoogle Scholar
  30. 30.
    E. Tang and L. Fu, arXiv:1403.7523 (2014).Google Scholar
  31. 31.
    F. de Juan, J. L. Mañes, and M. A. H. Vozmediano, Phys. Rev. B 87, 165131 (2013).ADSCrossRefGoogle Scholar
  32. 32.
    V. Khodel and V. Shaginyan, JETP Lett. 51, 553 (1990).ADSGoogle Scholar
  33. 33.
    N. B. Kopnin, T. T. Heikkilä, and G. E. Volovik, Phys. Rev. B 83, 220503 (2011).ADSCrossRefGoogle Scholar
  34. 34.
    Y. Kopaev, Sov. Phys. JETP 31, 544 (1970).ADSGoogle Scholar
  35. 35.
    Y. Kopaev and A. Rusinov, Phys. Lett. A 121, 300 (1987).ADSCrossRefGoogle Scholar
  36. 36.
    A. Shashkin, V. Dolgopolov, J. Clark, V. Shaginyan, M. Zverev, and V. Khodel, arXiv:1404.7465 (2014).Google Scholar
  37. 37.
    D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriksson, A. I. Lichtenstein, and M. I. Katsnelson, Phys. Rev. Lett. 112, 070403 (2014).ADSCrossRefGoogle Scholar
  38. 38.
    K. Antonowicz, Nature 247, 358 (1974).ADSCrossRefGoogle Scholar
  39. 39.
    Y. Kopelevich, P. Esquinazi, J. Torres, and S. Moehlecke, J. Low Temp. Phys. 119, 691 (2000).ADSCrossRefGoogle Scholar
  40. 40.
    R. R. da Silva, J. H. S. Torres, and Y. Kopelevich, Phys. Rev. Lett. 87, 147001 (2001).ADSCrossRefGoogle Scholar
  41. 41.
    H.-P. Yang, H.-H. Wen, Z.-W. Zhao, and S.-L. Li, Chin. Phys. Lett. 18, 1648 (2001).ADSCrossRefGoogle Scholar
  42. 42.
    S. Moehlecke, P. C. Ho, and M. B. Maple, Philos. Mag. B 82, 1335 (2002).ADSGoogle Scholar
  43. 43.
    I. Felner and Y. Kopelevich, Phys. Rev. B 79, 233409 (2009).ADSCrossRefGoogle Scholar
  44. 44.
    I. Felner, Mater. Res. Express 1, 016001 (2014).ADSCrossRefGoogle Scholar
  45. 45.
    P. Esquinazi, Papers Phys. 5, 050007 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • P. Esquinazi
    • 1
  • T. T. Heikkilä
    • 2
  • Y. V. Lysogorskiy
    • 3
  • D. A. Tayurskii
    • 3
    • 4
  • G. E. Volovik
    • 5
    • 6
  1. 1.Division of Superconductivity and Magnetism, Institut für Experimentelle Physik IIUniversität LeipzigLeipzigGermany
  2. 2.Department of Physics and Nanoscience CenterUniversity of JyväskyläJyväskyläFinland
  3. 3.Institute of PhysicsKazan Federal UniversityKazanRussia
  4. 4.Centre for Quantum TechnologiesKazan Federal UniversityKazanRussia
  5. 5.Low Temperature LaboratoryAalto UniversityAaltoFinland
  6. 6.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations