JETP Letters

, Volume 100, Issue 5, pp 351–354

Two models of anisotropic propagation of a cardiac excitation wave

Biophysics
  • 50 Downloads

Abstract

Propagation of the action potential in the real heart is direction-dependent (anisotropic). We propose two general physical models explaining this anisotropy on the cellular level. The first, “delay” model takes into account the frequency of the cell-cell transitions in different directions of propagation, assuming each transition requires some small time interval. The second model relies on the assumption that the action potential transmits to the next cell only from the area at the pole of the previous cell. We estimated parameters of both models by doing optical mapping and fluorescent staining of cardiac cell samples grown on polymer fiber substrate. Both models gave reasonable estimations, but predicted different behaviors of the anisotropy ratio (ratio of the highest and lowest wave velocities) after addition of the suppressor of sodium channels such as lidocaine. The results of the experiment on lidocaine effect on anisotropy ratio were in favor of the first, “delay” model. Estimated average cell-cell transition delay was 240 ± 80 μs, which is close to the characteristic values of synaptic delay.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Krinsky, V. N. Biktashev, and A. M. Pertsov, Ann. N.Y. Acad. Sci. 591, 232 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    M. Vaquero, D. Calvo, and J. Jalife, Heart Rhythm 5, 872 (2008).CrossRefGoogle Scholar
  3. 3.
    A. G. Kleber and Y. Rudy, Phys. Rev. 84, 431 (2004).CrossRefGoogle Scholar
  4. 4.
    P. Colli-Franzone, L. F. Pavarino, and B. Taccardi, Math. Biosci. Eng. 197, 35 (2005).CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    A. T. Winfree, Sci. Am. 230, 82 (1974).CrossRefGoogle Scholar
  6. 6.
    Y. Orlova, N. Magome, L. Liu, Y. Chen, and K. Agladze, Biomaterials 32, 5615 (2011).CrossRefGoogle Scholar
  7. 7.
    N. Bursac, Y. H. Loo, K. Leong, and L. Tung, Biochem. Bioph. Res. 361, 847 (2007).CrossRefGoogle Scholar
  8. 8.
    N. Bursac, K. K. Parker, S. Iravanian, and L. Tung, Circ. Res. 91, e45 (2002).CrossRefGoogle Scholar
  9. 9.
    V. N. Biktashev, A. V. Holden, S. F. Mironov, A. M. Pertsov, and A. V. Zaitsev, J. Physiol. London 9, 695 (1998).Google Scholar
  10. 10.
    F. Fenton and A. Karma, Chaos 8, 20 (1998).ADSCrossRefMATHGoogle Scholar
  11. 11.
    C. F. Starmer, V. N. Biktashev, D, N. Romashko, M. R. Stepanov, O. N. Makarova, and V. I. Krinsky, Biophys. J. 65, 1775 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    V. I. Krinsky, Pharmacol. Ther. B 3, 539 (1978).Google Scholar
  13. 13.
    R. L. Winslow, D. F. Scollan, A. Holmes, C. K. Yung, J. Zhang, and M. S. Jafri, Ann. Rev. Biomed. Eng. 2, 119 (2000).CrossRefGoogle Scholar
  14. 14.
    A. S. Amin, H. L. Tan, and A. A. M. Wilde, Heart Rhythm 7, 117 (2010).CrossRefGoogle Scholar
  15. 15.
    A. Bhargava, X. Lin, P. Novak, K. Mehta, Y. Korchev, M. Delmar, and J. Gorelik, Circ. Res. 112, 1112 (2013).CrossRefGoogle Scholar
  16. 16.
    K. Agladze, M. W. Kay, V. Krinsky, and N. Sarvazyan, Am. J. Physiol.: Heart C 293, 503 (2007).Google Scholar
  17. 17.
    A. Isomura, M. Hörning, K. Agladze, and K. Yoshikawa, Phys. Rev. E 78, 1 (2008).CrossRefGoogle Scholar
  18. 18.
    S. Kadota, M. W. Kay, M. Magome, and K. Agladze, JETP Lett. 94, 824 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    J. D. Clements, Trends Neurosci. 19, 163 (1996).CrossRefGoogle Scholar
  20. 20.
    B. Katz and R. Miledi, J. Physiol. 231, 549 (1973).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Laboratory of Biophysics of Excitable SystemsMoscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia

Personalised recommendations