Advertisement

JETP Letters

, Volume 100, Issue 4, pp 279–284 | Cite as

Duality of quantum communication channels and a collective intercept-resend attack on quantum key distribution with differential phase shift

  • D. A. Kronberg
  • S. N. Molotkov
Quantum Information Science

Abstract

Quantum key distribution with differential phase shift is the least studied. A collective intercept-resend attack has been considered. Analysis of even this simplest attack is not simple. It has been shown that collective measurements with entangled states do not increase information of an eavesdropper as compared to individual measurements. This result is a consequence of the fundamental properties of quantum communication channels, which are attributed to the duality of quantum ensembles and measurements.

Keywords

Quantum State Entangle State JETP Letter Quantum Channel Critical Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).ADSCrossRefGoogle Scholar
  2. 2.
    R. Renner, PhD Thesis (ETH Zürich, 2005).Google Scholar
  3. 3.
    V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lütkenhaus, and M. Peev, Rev. Mod. Phys. 81, 1301 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    C. B. Bennett, Phys. Rev. Lett. 68, 3121 (1992).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    S. N. Molotkov, JETP Lett. 94, 469 (2011); JETP Lett. 96, 342 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    I. V. Radchenko, K. S. Kravtsov, S. P. Kulik, and S. N. Molotkov, arXiv:quant-ph/1403.3122; Laser Phys. Lett. 11, 065203 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    K. Inoue, E. Waks, and Y. Yamamoto, Phys. Rev. Lett. 89, 037902 (2002); K. Inoue, E. Waks, and Y. Yamamoto, Phys. Rev. A 68, 022317 (2003); K. Inoue, E. Waks, and Y. Yamamoto, Phys. Rev. A 68, 022317 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, arXiv:quant-ph/0506097.Google Scholar
  9. 9.
    A. S. Holevo, Russ. Math. Surv. 53, 1295 (1998).CrossRefzbMATHGoogle Scholar
  10. 10.
    S. N. Molotkov, J. Exp. Theor. Phys. 115, 969 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    I. Devetak and A. Winter, IEEE Trans. Inf. Theory 50, 3183 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    P. W. Shor, J. Math. Phys. 43, 4334 (2002).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    M. D’A. Giacomo, M. D’Ariano, and M. F. Sacchi, arXiv:quant-ph/11031972.Google Scholar
  14. 14.
    A. S. Holevo, arXiv:quant-ph/1103.2615.Google Scholar
  15. 15.
    K. Kraus, States, Effects and Operations (Springer, Berlin, 1983).zbMATHGoogle Scholar
  16. 16.
    M. M. Wilde, arXiv:quant-ph/1106.1445.Google Scholar
  17. 17.
    D. A. Kronberg and S. N. Molotkov, J. Exp. Theor. Phys. 118, 1 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Faculty of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia
  2. 2.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  3. 3.Academy of Cryptography of the Russian FederationMoscowRussia

Personalised recommendations