JETP Letters

, Volume 100, Issue 3, pp 162–166 | Cite as

Anisotropy of the oscillation dynamics of a breather on a trap in the electroconvective twist structure of a nematic

  • O. A. Skaldin
  • V. A. Delev
  • E. S. Shikhovtseva
  • Yu. A. Lebedev
  • E. S. Batyrshin
Condensed Matter


The oscillation dynamics of dislocations with a dissociated nucleus in the electroconvective twist structure of a nematic liquid crystal has been studied. The initial state of the roll twist structure is unstable. One of the origins of this is the helical flows of the nematic in the neighboring rolls with the antiparallel axial velocity components. As a result, oscillating or “breathing” defects are formed, which have the properties of breathers and are described by the sine-Gordon equation. It has been demonstrated that the space-time anisotropy of the character of motion of the dislocations in opposite directions orthogonal to the roll structure takes place in such a nonstationary system.


Soliton JETP Letter Nematic Liquid Crystal Half Period Sine Gordon Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. K. Vainshtein, V. M. Fridkin, and V. L. Indenbom, Modern Crystallography, Vol. 2: Structure of Crystals, Ed. by B. K. Vainshtein, A. A. Chernov, and L. A. Shuvalov (Nauka, Moscow, 1979; Springer-Verlag, Berlin, 1982).Google Scholar
  2. 2.
    J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, 1968)].Google Scholar
  3. 3.
    A. M. Stoneham and J. Lothe, Theory of Defects in Solids (Oxford Univ. Press, Oxford, 1975).Google Scholar
  4. 4.
    M. Kleman, Points, Lines and Walls in Liquid Crystals, Magnetic Systems and Various Ordered Media (Wiley, Chichester, 1983).Google Scholar
  5. 5.
    P. V. Dolganov, V. M. Zhilin, V. K. Dolganov, and E. I. Kats, JETP Lett. 89, 161 (2009).CrossRefADSGoogle Scholar
  6. 6.
    E. G. Ekomasov, R. R. Murtazin, and V. N. Nazarov, Phys. Met. Metallogr. 115, 117 (2014).CrossRefADSGoogle Scholar
  7. 7.
    H. Yamazaki, S. Kai, and K. Hirakawa, J. Phys. Soc. Jpn. 56, 1 (1987).CrossRefADSGoogle Scholar
  8. 8.
    A. Weber, E. Bodenschatz, and L. Kramer, Adv. Mater. 3, 191 (1991).CrossRefGoogle Scholar
  9. 9.
    S. Rasenat, V. Steinberg, and I. Rehberg, Phys. Rev. A 42, 5998 (1990).CrossRefADSGoogle Scholar
  10. 10.
    A. Hertrich, A. P. Krekhov, and O. A. Scaldin, J. Phys. II (France) 4, 239 (1994).CrossRefGoogle Scholar
  11. 11.
    V. A. Delev, P. Toth, and A. P. Krekhov, Mol. Cryst. Liq. Cryst. 351, 179 (2000).CrossRefGoogle Scholar
  12. 12.
    O. A. Skaldin, V. A. Delev, E. S. Shikhovtseva, E. S. Batyrshin, and Yu. A. Lebedev, JETP Lett. 93, 388 (2011).CrossRefADSGoogle Scholar
  13. 13.
    O. A. Skaldin, V. A. Delev, and E. S. Shikhovtseva, JETP Lett. 97, 92 (2013).CrossRefADSGoogle Scholar
  14. 14.
    E. S. Shikhovtseva, Physica A 303, 133 (2002).CrossRefADSGoogle Scholar
  15. 15.
    M. A. Shamsutdinov, I. Yu. Lomakina, V. N. Nazarov, A. T. Kharisov, and D. M. Shamsutdinov, Ferro- and Antiferromagnetodynamics: Nonlinear Oscillations, Waves, and Solitons (Nauka, Moscow, 2009) [in Russian].Google Scholar
  16. 16.
    M. Dennin, D. S. Cannell, and G. Ahlers, Phys. Rev. E 57, 638 (1998).CrossRefADSGoogle Scholar
  17. 17.
    E. S. Batyrshin, Candidate’s Dissertation in Physics and Mathematics (Ufa, 2012).Google Scholar
  18. 18.
    E. S. Shikhovtseva and O. A. Ponomarev, Phys. Low-Dim. Struct. 5–6, 43 (1998).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • O. A. Skaldin
    • 1
  • V. A. Delev
    • 1
  • E. S. Shikhovtseva
    • 1
  • Yu. A. Lebedev
    • 1
  • E. S. Batyrshin
    • 1
  1. 1.Institute of Physics of Molecules and Crystals, Ufa Scientific CenterRussian Academy of SciencesUfaRussia

Personalised recommendations