JETP Letters

, Volume 100, Issue 2, pp 110–113 | Cite as

Landau theory for helical nematic phases

Condensed Matter

Abstract

We propose Landau phenomenology for the phase transition from the conventional nematic into the conical helical orientationally non-uniform structure recently identified in liquid crystals formed by “banana”-shaped molecules. The mean field predictions are mostly in agreement with experimental data. Based on the analogy with de Gennes model, we argue that fluctuations of the order parameter turn the transition to the first order phase transition rather than continuous one predicted by the mean-field theory. This conclusion is in agreement with experimental observations. We discuss the new Goldstone mode to be observed in the low-temperature phase.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. E. Hough, M. Spannuth, M. Nakata, D. A. Coleman, C. D. Jones, G. Dantlgraber, C. Tschierske, J. Watanabe, E. Korblova, D. M. Walba, J. E. Maclennan, M. A. Glaser, and N. A. Clark, Science 325, 452 (2009).CrossRefADSGoogle Scholar
  2. 2.
    V. P. Panov, M. Nagaraj, J. K. Vij, Yu. P. Panarin, A. Kohlmeier, M. G. Tamba, R. A. Lewis, and G. H. Mehl, Phys. Rev. Lett. 105, 167801 (2010).CrossRefADSGoogle Scholar
  3. 3.
    M. Cestari, S. Diez-Berart, D. A. Dunmur, A. Ferrarini, M. R. de la Fuente, D. J. B. Jackson, D. O. Lopez, G. R. Luckhurst, M. A. Perez-Jubindo, R. M. Richardson, J. Salud, B. A. Timimi, and H. Zimmermann, Phys. Rev. E 84, 031704 (2011).CrossRefADSGoogle Scholar
  4. 4.
    V. Borshch, Y. K. Kim, J. Xiang, M. Gao, A. Jakli, V.P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H. Mehl, and O. D. Lavrentovich, Nature Commun. 4, 2635 (2013).CrossRefADSGoogle Scholar
  5. 5.
    J. Mandle, E. J. Davis, S. A. Lobato, C.-C. A. Vol, S. J. Cowlinga, and J. W. Goodbya, Phys. Chem. Chem. Phys. 16, 6907 (2014).CrossRefGoogle Scholar
  6. 6.
    I. Dozov, Eur. Lett. 56, 247 (2001).CrossRefADSGoogle Scholar
  7. 7.
    S. Kaur, J. Addis, C. Greco, A. Ferrarini, V. Görtz, J. W. Goodby, and H. F. Gleeson, Phys. Rev. E 86, 041703 (2012).CrossRefADSGoogle Scholar
  8. 8.
    K. Adlem, M. opi, G. R. Luckhurst, A. Mertelj, O. Parri, R. M. Richardson, B. D. Snow, B. A. Timimi, R. P. Tuffin, and D. Wilkes, Phys. Rev. E 88, 022503 (2013).CrossRefADSGoogle Scholar
  9. 9.
    C. Meyer, G. R. Lukhurst, and I. Dozov, Phys. Rev. Lett. 111, 067801 (2013).CrossRefADSGoogle Scholar
  10. 10.
    S. M. Shamid, S. Dhakal, and J. V. Selinger, Phys. Rev. E 87, 052503 (2013).CrossRefADSGoogle Scholar
  11. 11.
    N. Vanpotic, M. Cepic, M. A. Osipov, and E. Gorecka, Phys. Rev. E 89, 030501(R) (2014).CrossRefADSGoogle Scholar
  12. 12.
    E. G. Virga, Phys. Rev. E 89, 052502 (2014).CrossRefADSGoogle Scholar
  13. 13.
    I. E. Dzyaloshinskii, S. G. Dmitriev, and E. I. Kats, Sov. Phys. JETP 41, 1167 (1975).ADSGoogle Scholar
  14. 14.
    S. M. Shamid, D. W. Allender, and J. V. Selinger, arxiv: 1405.5584v1 (2014).Google Scholar
  15. 15.
    E. I. Kats, V. V. Lebedev, and A. R. Muratov, Phys. Rep. 228, 1 (1993).CrossRefADSGoogle Scholar
  16. 16.
    K. G. Wilson and J. Kogut, Phys. Rep. 12, 75 (1974).CrossRefADSGoogle Scholar
  17. 17.
    P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993).Google Scholar
  18. 18.
    B. I. Halperin, T. C. Lubensky, and S.-K. Ma, Phys. Rev. Lett. 32, 292 (1974).CrossRefADSGoogle Scholar
  19. 19.
    T. C. Lubensky and J.-H. Chen, Phys. Rev. B 17, 366 (1978).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia

Personalised recommendations