Advertisement

JETP Letters

, Volume 100, Issue 1, pp 16–23 | Cite as

Correlation properties of FeAs-based superconductors: Quantum trajectory Monte Carlo method

  • V. A. Kashurnikov
  • A. V. KrasavinEmail author
Condensed Matter

Abstract

Pair correlation functions for two-dimensional FeAs clusters simulating iron-based superconductors have been calculated with the generalized quantum Monte Carlo algorithm within the full two-orbital model. The data obtained for clusters with dimensions up to 10 × 10 FeAs cells indicate the possibility of the effective attraction of charge carriers, which corresponds to symmetry A 1g , at certain interaction parameters. The dependences of pair correlations on the dimension of a cluster, temperature, interaction magnitude, and type of symmetry of the order parameter have been analyzed.

Keywords

Interaction Parameter JETP Letter Pair Correlation Pair Correlation Function Normal Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).CrossRefGoogle Scholar
  2. 2.
    Yu. Isyumov and E. Kurmaev, High-Tc Superconductors Based on FeAs Compounds (Springer, Berlin, 2010).CrossRefGoogle Scholar
  3. 3.
    E. Dagotto, Rev. Mod. Phys. 85, 849 (2013).CrossRefADSGoogle Scholar
  4. 4.
    V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987).CrossRefADSGoogle Scholar
  5. 5.
    S. Raghu, X.-L. Qi, Ch.-X. Liu, D. J. Scalapino, and S.-C. Zhang, Phys. Rev. B 77, 220503(R) (2008).CrossRefADSGoogle Scholar
  6. 6.
    A. Moreo, M. Daghofer, J. A. Riera, and E. Dagotto, Phys. Rev. B 79, 134502 (2009).CrossRefADSGoogle Scholar
  7. 7.
    M. Daghofer, A. Nicholson, A. Moreo, and E. Dagotto, Phys. Rev. B 81, 014511 (2010).CrossRefADSGoogle Scholar
  8. 8.
    S.-L. Yu, J. Knang, and J.-X. Li, Phys. Rev. B 79, 064517 (2009).CrossRefADSGoogle Scholar
  9. 9.
    Q. Luo, G. Martins, D.-X. Yao, M. Daghofer, R. Yu, A. Moreo, and E. Dagatto, Phys. Rev. B 82, 104508 (2010).CrossRefADSGoogle Scholar
  10. 10.
    S. Graser, T. A. Maier, P. J. Hirschfeld, and D. J. Scalapino, New J. Phys. 11, 025016 (2009).CrossRefADSGoogle Scholar
  11. 11.
    M. V. Sadovskii, Phys. Usp. 51, 1243 (2008).CrossRefGoogle Scholar
  12. 12.
    K. Ishida, Y. Nakai, and H. Hosono, J. Phys. Soc. Jpn. 78, 062001 (2009).CrossRefADSGoogle Scholar
  13. 13.
    M. V. Sadovskii, E. Z. Kuchinskii, and I. A. Nekrasov, J. Magn. Magn. Mater. 324, 3481 (2012).CrossRefADSGoogle Scholar
  14. 14.
    M. V. Medvedev, I. A. Nekrasov, and M. V. Sadovskii, JETP Lett. 95, 33 (2012).CrossRefADSGoogle Scholar
  15. 15.
    N. V. Prokof’ev, B. V. Svistunov, and I. S. Tupitsyn, J. Exp. Theor. Phys. 87, 310 (1998).CrossRefADSGoogle Scholar
  16. 16.
    V. A. Kashurnikov and A. V. Krasavin, J. Exp. Theor. Phys. 111, 180 (2010).CrossRefADSGoogle Scholar
  17. 17.
    V. A. Kashurnikov and A. V. Krasavin, JETP Lett. 97, 333 (2013).CrossRefADSGoogle Scholar
  18. 18.
    K. Haule, J. H. Shim, and G. Kotliar, Phys. Rev. Lett. 100, 226402 (2008).CrossRefADSGoogle Scholar
  19. 19.
    A. Nicholson, W. Ge, X. Zhang, J. Riera, M. Daghofer, A. M. Oles, G. B. Martins, A. Moreo, and E. Dagotto, Phys. Rev. Lett. 106, 217002 (2011).CrossRefADSGoogle Scholar
  20. 20.
    M. Okumura, N. Nakai, H. Nakamura, N. Hayashi, S. Yamada, and M. Machida, Physica C 469, 932 (2009).CrossRefADSGoogle Scholar
  21. 21.
    Y. Wan and Q.-H. Wang, arXiv:0806.0923.Google Scholar
  22. 22.
    K. Kubo and P. Thalmeier, J. Phys. Soc. Jpn. 80, SA121 (2011).CrossRefGoogle Scholar
  23. 23.
    T. Ma, H.-Q. Lin, and J. Hu, Phys. Rev. Lett. 110, 107002 (2013).CrossRefADSGoogle Scholar
  24. 24.
    Y. Wu, G. Liu, and T. Ma, Europhys. Lett. 104, 27013 (2013).CrossRefADSGoogle Scholar
  25. 25.
    S. Liang, G. Alvarez, C. Sen, A. Moreo, and E. Dagotto, Phys. Rev. Lett. 109, 047001 (2012).CrossRefADSGoogle Scholar
  26. 26.
    S. Liang, A. Moreo, and E. Dagotto, Phys. Rev. Lett. 111, 047004 (2013).CrossRefADSGoogle Scholar
  27. 27.
    R. Applegate, R. P. Singh, C. C. Chen, and T. P. Devereaux, Phys. Rev. B 85, 054411 (2012).CrossRefADSGoogle Scholar
  28. 28.
    D. J. Singh and M.-H. Du, Phys. Rev. Lett. 100, 273003 (2008).Google Scholar
  29. 29.
    A. Abrikosov, L. Gorkov, and I. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Dobrosvet, Moscow, 1998; Prentice-Hall, Englewood Cliffs, NJ, 1963).Google Scholar
  30. 30.
    N. Furukawa and M. J. Imada, Proc. Soc. Jpn. 60, 810 (1991).MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    M. Daghofer, A. Moreo, J. A. Riera, E. Arrigoni, D. J. Scalapino, and E. Dagotto, Phys. Rev. Lett. 101, 237004 (2008).CrossRefADSGoogle Scholar
  32. 32.
    E. Berg, S. A. Kivelson, and D. J. Scalapino, Phys. Rev. B 81, 172504 (2010).CrossRefADSGoogle Scholar
  33. 33.
    Y. Ran, F. Wang, H. Zhau, A. Vishwanath, and D.-H. Lee, Phys. Rev. B 79, 014505 (2009).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations