JETP Letters

, Volume 99, Issue 11, pp 622–626 | Cite as

Mapping electromagnetic fields near a subwavelength hole

  • D. V. PermyakovEmail author
  • I. S. Mukhin
  • I. I. Shishkin
  • A. K. Samusev
  • P. A. Belov
  • Yu. S. Kivshar
Optics and Laser Physics


We study, both experimentally and theoretically, the scattering of electromagnetic waves by a subwavelength hole fabricated in a thin metallic film. We employ the scanning near-field optical microscopy in order to reconstruct experimentally the full three-dimensional structure of the electromagnetic fields in the vicinity of the hole. We observe an interference of all excited waves with an incident laser beam which allows us to gain the information about the wave phases. Along with the well-known surface plasmon polaritons propagating primarily in the direction of the incident beam polarization, we observe the free-space radiation diffracted by the hole. We compare the experimental results with the fields of pure electric and pure magnetic dipoles as well as with direct numerical simulations. We confirm that a single hole in a thin metallic film excited at the normal incidence manifests itself as an effective magnetic dipole in the visible spectral range.


JETP Letter Surface Plasmon Polaritons Silver Film Scanning Near Field Optical Microscope Visible Spectral Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).ADSGoogle Scholar
  2. 2.
    S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).ADSGoogle Scholar
  3. 3.
    X. Li, L. Huang, Q. Tan, B. Bai, and G. Jin, Opt. Express 19, 6541 (2011).ADSGoogle Scholar
  4. 4.
    J. Zhang, L. Zhang, and W. Xu, J. Phys. D: Appl. Phys. 45, 113001 (2012).ADSGoogle Scholar
  5. 5.
    B. B. Tsema, Y. B. Tsema, M. R. Shcherbakov, Y.-H. Lin, D.-R. Liu, V. V. Klimov, A. A. Fedyanin, and D. P. Tsai, Opt. Express 20, 10538 (2012).ADSGoogle Scholar
  6. 6.
    L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, Appl. Phys. Lett. 85, 467 (2004).ADSGoogle Scholar
  7. 7.
    S. H. Chang, S. Gray, and G. Schatz, Opt. Express 13, 3150 (2005).ADSGoogle Scholar
  8. 8.
    D. W. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett. 44, 651 (1984).ADSGoogle Scholar
  9. 9.
    B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, J. Chem. Phys. 112, 7761 (2000).ADSGoogle Scholar
  10. 10.
    L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, Cambridge, 2012).Google Scholar
  11. 11.
    H. A. Bethe, Phys. Rev. 66, 163 (1944).zbMATHMathSciNetADSGoogle Scholar
  12. 12.
    C. Bouwkamp, Philips Res. Rep. 5, 401 (1950).MathSciNetGoogle Scholar
  13. 13.
    V. Klimov and V. Letokhov, Opt. Commun. 106, 151 (1994).ADSGoogle Scholar
  14. 14.
    R. Wannemacher, Opt. Commun. 195, 107 (2001).ADSGoogle Scholar
  15. 15.
    C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).ADSGoogle Scholar
  16. 16.
    I. V. Treshin, V. V. Klimov, P. N. Melentiev, and V. I. Balykin, Phys. Rev. A 88, 023832 (2013).ADSGoogle Scholar
  17. 17.
    J. A. Porto, R. Carminati, and J. J. Greffet, J. Appl. Phys. 88, 4845 (2000).ADSGoogle Scholar
  18. 18.
    H. Kihm, S. Koo, Q. Kim, K. Bao, J. Kihm, W. Bak, S. Eah, C. Lienau, H. Kim, P. Nordlander, N. Halas, N. Park, and D. S. Kim, Nature Commun. 2, 451 (2011).ADSGoogle Scholar
  19. 19.
    B. le Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, Nature Photon. 8, 43 (2014).ADSGoogle Scholar
  20. 20.
    T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, Nature 391, 667 (1998).ADSGoogle Scholar
  21. 21.
    F. J. García de Abajo, J. J. Sáenz, I. Campillo, and J. S. Dolado, Opt. Express 14, 7 (2006).ADSGoogle Scholar
  22. 22.
    D. N. Neshev, A. Minovich, T. Dieing, H. T. Hattori, I. McKerracher, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, Phys. Status Solidi: Rapid Res. Lett. 4, 253 (2010).ADSGoogle Scholar
  23. 23.
    F. J. Garca-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010).ADSGoogle Scholar
  24. 24.
    N. Rotenberg, M. Spasenovič, T. L. Krijger, B. le Feber, F. J. García de Abajo, and L. Kuipers, Phys. Rev. Lett. 108, 127402 (2012).ADSGoogle Scholar
  25. 25.
    N. Rotenberg, T. L. Krijger, B. le Feber, M. Spasenovič, F. J. García de Abajo, and L. Kuipers, Phys. Rev. B 88, 241408(R) (2013).ADSGoogle Scholar
  26. 26.
    L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, Nano Lett. 5, 1399 (2005).ADSGoogle Scholar
  27. 27.
    P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).ADSGoogle Scholar
  28. 28.
    H. W. Kihm, J. Kim, S. Koo, J. Ahn, K. Ahn, K. Lee, N. Park, and D. S. Kim, Opt. Express 21, 5625 (2013).ADSGoogle Scholar
  29. 29.
    J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • D. V. Permyakov
    • 1
    Email author
  • I. S. Mukhin
    • 1
    • 2
  • I. I. Shishkin
    • 1
  • A. K. Samusev
    • 1
  • P. A. Belov
    • 1
  • Yu. S. Kivshar
    • 1
    • 3
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.St. Petersburg Academic UniversityRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Nonlinear Physics Center, Research School of Physics and EngineeringAustralian National UniversityCanberraAustralia

Personalised recommendations