Advertisement

JETP Letters

, Volume 99, Issue 9, pp 514–517 | Cite as

Energy portrait of rogue waves

  • V. E. Zakharov
  • R. V. Shamin
  • A. V. Yudin
Plasma, Hydro- and Gas Dynamics

Abstract

Processes of the concentration of energy at the formation of rogue waves have been studied in computer experiments based on the exact hydrodynamic equations for an ideal fluid. The distribution of anomalies of waves both in height and in energy has been found in the computer experiment. Correlation between the energy concentration and height of anomalously large surface waves has been revealed. The results can be used to estimate the danger of anomalously large surface waves.

Keywords

Surface Wave Energy Concentration JETP Letter Computer Experiment Rogue Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean (Springer, Berlin, Heidelberg, New York, 2009).MATHGoogle Scholar
  2. 2.
    I. Nikolkina and I. Didenkulova, Nature Hazards Earth Syst. Sci. 11, 2913 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    K. L. Henderson, D. H. Pelegrine, and J. W. Dold, Wave Motion 29, 341 (1999).CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    W. J. D. Baterman, C. Swan, and P. H. Taylor, J. Comput. Phys. 174, 277 (2001).ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    A. I. Dyachenko and V. E. Zakharov, JETP Lett. 88, 307 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    V. E. Zakharov, A. I. Dyachenko, and R. V. Shamin, Eur. Phys. J.: Spec. Top. 185, 113 (2010).Google Scholar
  7. 7.
    D. Chalikov, Phys. Fluids 21, 076602-1 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    R. V. Shamin and A. V. Yudin, Dokl. Earth Sci. 448, 240 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    V. E. Zakharov and R. V. Shamin, JETP Lett. 91, 62 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    V. E. Zakharov and R. V. Shamin, JETP Lett. 96, 66 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    V. E. Zakharov, A. I. Dyachenko, and O. A. Vasilyev, Eur. J. Mech. B: Fluids 21, 283 (2002).CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    R. V. Shamin, J. Math. Sci. 160, 537 (2009).CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    R. V. Shamin, Dokl. Math. 73, 112 (2006).CrossRefMATHGoogle Scholar
  14. 14.
    R. V. Shamin, Sib. Zh. Vychisl. Matem. 9, 379 (2006).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • V. E. Zakharov
    • 1
    • 2
    • 3
    • 4
  • R. V. Shamin
    • 3
    • 5
    • 6
  • A. V. Yudin
    • 5
    • 6
  1. 1.Department of MathematicsUniversity of ArizonaTucsonUSA
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  5. 5.Sakhalin State UniversityYuzhno-SakhalinskRussia
  6. 6.Peoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations