Advertisement

JETP Letters

, Volume 99, Issue 9, pp 523–526 | Cite as

Conductivity of a half filled landau level

  • S. V. Iordanski
Condensed Matter

Abstract

It is shown that the thermodynamic instability at the half filling of L1 leads to the vortex lattice formation with the electronic spectrum analogous to that of graphene with two Dirac-Fermi points on Brillouin cell boundary. This result is used for the explanation of the observed current generated by a surface acoustic wave in the heterostructure on the surface of piezoelectric GaAs. Using the existence of two Fermi points instead of a Fermi surface suggested in the previous theoretical works, permit the explanation of the experimental results.

Keywords

Vortex Fermi Surface JETP Letter Surface Acoustic Wave Vortex Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Quantum Hall Effect, Ed. by R. E. Prange and S. M. Girvin (Springer, New York, 1987).Google Scholar
  2. 2.
    New Perspectives in Quantum Hall Effect, Ed. by S. Das Sarma and A. Pinczuk (Wiley, New York, 1997).Google Scholar
  3. 3.
    J. K. Jain, Phys. Rev. B 41, 7653 (1990).ADSCrossRefGoogle Scholar
  4. 4.
    B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47, 7312 (1993); B. I. Halperin, in New Perspectives in Quantum Hall Effects, Ed. by S. Das Sarma and A. Pinczuk (Wiley, New York, 1997), p. 225.ADSCrossRefGoogle Scholar
  5. 5.
    S. V. Iordanski and D. S. Lyubshin, J. Phys.: Condens. Matter 21, 405601 (2009).Google Scholar
  6. 6.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of the Continuous Media (Fizmathlit, Moscow, 1984; Pergamon Press, New York, 1960).Google Scholar
  7. 7.
    E. M. Lifshitz and L. P. Pitaevski, Course of Theoretical Physics, Vol. 9: Statistical Physics, pt. 2 (Nauka, Moscow, 1980; Pergamon Press, New York, 1969).Google Scholar
  8. 8.
    R. L. Willett, M. A. Paalanen, R. R. Ruel, K. W. West, I. N. Pfeifer, and D. I. Bishop, Phys. Rev. Lett. 65, 112 (1990); Phys. Rev. B 47, 7344 (1993); Phys. Rev. Lett. 71, 3846 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    G. L. Bir and G. E. Pikus, Symmetry and the Deformation Effects in Semiconductors (Fizmathlit, Moscow, 1972; Wiley, New York, 1975).Google Scholar
  10. 10.
    L. D. Landau and E. M. Lifshitz, Statistical Physics (Fizmathlit, Moscow, 1984; Pergamon, Oxford, 1980).Google Scholar
  11. 11.
    A. A. Abrikosov, L. P. Gorkov, and Y. E. Dsyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dobrosvet, Moscow, 1998; Prentice-Hall, Englewood Cliffs, NJ, 1963).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations