JETP Letters

, Volume 99, Issue 4, pp 191–195 | Cite as

Step-by-step first order antiferroelectric-paraelectric transition induced by frustration and electric field

Condensed Matter

Abstract

We show analytically that even not too strong frustrating next neighbor interaction strongly affects first order antiferroelectric-paraelectric transition in an external electric field. We apply mean-field Landau theory. In the electric field a single phase transition at T0 splits into a step-by-step staircase with a series of intermediate phases. Unexpectedly enough we found that the equilibrium structures of the phases differ substantially from structures formed at low temperature both without field and in field. Polarization of intermediate structures decreases with temperature in a stepwise manner. Similar step-by-step transitions can occur also in magnetic materials with frustrating interaction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Mušević, R. Blinc, and B. Žekš, The Physics of Ferroelectric and Antiferroelectric Liquid Crystals (World Scientific, Singapore, 2000).Google Scholar
  2. 2.
    B. A. Strukov and A. P. Levanyuk, Ferroelectric Phenomena in Crystals: Physical Foundations (Springer, Berlin, 2011).Google Scholar
  3. 3.
    C. Kittel, Phys. Rev. 82, 729 (1951).ADSCrossRefMATHGoogle Scholar
  4. 4.
    K. Okada, J. Phys. Soc. Jpn. 37, 1226 (1974).ADSCrossRefGoogle Scholar
  5. 5.
    W. Selke and M. E. Fisher, Phys. Rev. B 20, 257 (1979).ADSCrossRefGoogle Scholar
  6. 6.
    P. Bak, Phys. Rev. Lett. 49, 249 (1982).ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    P. Mach, R. Pindak, A.-M. Levelut, P. Barois, H. T. Nguyen, C. C. Huang, and L. Furenlid, Phys. Rev. Lett. 81, 1015 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    B. Rovšek, M. Čepič, and B. Žekš, Phys. Rev. E 62, 3758 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    M. Čepič and B. Žekš, Phys. Rev. Lett. 87, 085501 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    D. A. Olson, X. F. Han, A. Cady, and C. C. Huang, Phys. Rev. E 66, 021702 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    P. V. Dolganov, V. M. Zhilin, V. K. Dolganov, and E. I. Kats, Phys. Rev. E 67, 041716 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    A. V. Emelyanenko and M. Osipov, Phys. Rev. E 68, 051703 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    A. Šurda, Phys. Rev. B 69, 134116 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    S. Wang, L. Pan, R. Pindak, Z. Q. Liu, H. T. Nguyen, and C. C. Huang, Phys. Rev. Lett. 104, 027801 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    K. Zhang and P. Charbonneau, Phys. Rev. Lett. 104, 195703 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    P. V. Dolganov, V. M. Zhilin, V. K. Dolganov, and E. I. Kats, Phys. Rev. E 82, 040701(R) (2010).ADSCrossRefGoogle Scholar
  17. 17.
    P. V. Dolganov, V. M. Zhilin, and E. I. Kats, J. Exp. Theor. Phys. 115, 1140 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    P. Mellado, A. Concha, and L. Mahadevan, Phys. Rev. Lett. 109, 257203 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    P. V. Dolganov, V. M. Zhilin, V. K. Dolganov, and E. I. Kats, JETP Lett. 87, 242 (2008).CrossRefGoogle Scholar
  20. 20.
    P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge Univ. Press, Cambridge, 1995).CrossRefGoogle Scholar
  21. 21.
    P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Claredon, Oxford, 1994).Google Scholar
  22. 22.
    H. Takezoe, E. Gorecka, and M. Čepič, Rev. Mod. Phys. 82, 897 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    A. Fukuda, Y. Takanishi, T. Isozaki, K. Ishikawa, and H. Takezoe, J. Mater. Chem. 4, 997 (1994).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations