Advertisement

JETP Letters

, Volume 99, Issue 3, pp 124–128 | Cite as

On slow flows of a weakly stratified relativistic fluid in a static gravitational field

  • V. P. Ruban
Plasma, Hydro- and Gas Dynamics

Abstract

Simplified equations for slow flows of a weakly stratified (in entropy) fluid inside or near a massive astrophysical object have been derived from the variational formulation of ideal general relativistic hydrodynamics under the conditions that the gravitational field in the leading order is centrosymmetric and static and that the effect of a magnetic field is negligibly small. Internal waves and vortices in such systems are soft modes as compared to sound. This circumstance allows the formulation of a “soundproof” Hamiltonian model. This model is an analog of nonrelativistic hydrodynamic anelastic models, which are widely used in studies of internal waves and/or convection in spatially inhomogeneous compressible media in atmospheric physics, geophysics, and astrophysics.

Keywords

Gravitational Field Internal Wave JETP Letter Slow Flow Relativistic Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Ogura and N. A. Phillips, J. Atmos. Sci. 19, 173 (1962).ADSCrossRefGoogle Scholar
  2. 2.
    D. R. Durran, J. Atmos. Sci. 46, 1453 (1989).ADSCrossRefGoogle Scholar
  3. 3.
    P. R. Bannon, J. Atmos. Sci. 53, 3618 (1996).ADSCrossRefGoogle Scholar
  4. 4.
    D. R. Durran, J. Fluid Mech. 601, 365 (2008).ADSCrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    A. S. Almgren, J. B. Bell, C. A. Rendleman, and M. Zingale, Astrophys. J. 637, 922 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    U. Achatz, R. Klein, and F. Senf, J. Fluid Mech. 663, 120 (2010).ADSCrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    B. P. Brown, G. M. Vasil, and E. G. Zweibel, Astrophys. J. 756, 109 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    G. A. Glatzmaier and P. H. Roberts, Physica D 97, 81 (1996).ADSCrossRefGoogle Scholar
  9. 9.
    P. H. Roberts and G. A. Glatzmaier, Rev. Mod. Phys. 72, 1081 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    T. S. Lund and D. C. Fritts, J. Geophys. Res. 117, D21105 (2012).Google Scholar
  11. 11.
    T. M. Rogers and G. A. Glatzmaier, Astrophys. J. 620, 432 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    T. M. Rogers and G. A. Glatzmaier, Mon. Not. R. Astron. Soc. 364, 1135 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    M. K. Browning, Astrophys. J. 676, 1262 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    L. Villain, S. Bonazzola, and P. Haensel, Phys. Rev. D 71, 083001 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    S. Bonazzola, L. Villain, and M. Bejger, Class. Quantum Grav. 24, 221 (2007).ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    P. Cerda-Duran, N. Stergioulas, and J. A. Font, Mon. Not. R. Astron. Soc. 397, 1607 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1987).MATHGoogle Scholar
  18. 18.
    V. P. Ruban, Phys. Rev. D 62, 127504 (2000).ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    J. R. Ray, J. Math. Phys. 13, 1451 (1972).ADSCrossRefMATHGoogle Scholar
  20. 20.
    J. D. Brown, Class. Quantum Grav. 10, 1579 (1993).ADSCrossRefMATHGoogle Scholar
  21. 21.
    V. E. Zakharov and E. A. Kuznetsov, Phys. Usp. 40, 1087 (1997).ADSCrossRefGoogle Scholar
  22. 22.
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1980).Google Scholar
  23. 23.
    R. C. Tolman, Relativity, Thermodynamics, and Cosmology (Oxford Univ. Press, New York, 1934).Google Scholar
  24. 24.
    S. S. Bayin, Phys. Rev. D 18, 2745 (1978).ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    E. N. Glass and S. P. Goldman, J. Math. Phys. 19, 856 (1978).ADSCrossRefGoogle Scholar
  26. 26.
    J. Hajj-Boutros, J. Math. Phys. 27, 1363 (1986).ADSCrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    S. Rahman and M. Visser, Class. Quantum Grav. 19, 935 (2002).ADSCrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    K. Lake, Phys. Rev. D 67, 104015 (2003).ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    J. Loranger and K. Lake, Phys. Rev. D 78, 127501 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    N. Pant, R. N. Mehta, and M. J. Pant, Astrophys. Space Sci. 330, 353 (2010).ADSCrossRefMATHGoogle Scholar
  31. 31.
    N. Pant, P. Fuloria, and B. C. Tewari, Astrophys. Space Sci. 340, 407 (2012).ADSCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations