Advertisement

JETP Letters

, Volume 99, Issue 2, pp 63–66 | Cite as

Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal

  • E. A. Bezus
  • L. L. Doskolovich
  • D. A. Bykov
  • V. A. Soifer
Optics and Laser Physics

Abstract

Phase modulation methods for surface electromagnetic waves propagating at the interface between a homogeneous medium and a one-dimensional photonic crystal have been analyzed numerically and theoretically. Modulation is performed by changing the geometrical parameters of the microrelief on the surface of the photonic crystal. The phase modulation methods under consideration can be used to create optical elements for surface waves, in particular, lenses, prisms, and diffraction gratings. A Bragg grating has been calculated as an example. According to the simulation results, the average coefficient of reflection of a surface wave in the band gap is 0.95.

Keywords

Photonic Crystal JETP Letter Surface Plasmon Polaritons Transverse Electric Effective Refractive Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. J. Polo and A. Lakhtakia, Laser Photon. Rev. 5, 1 (2011).CrossRefGoogle Scholar
  2. 2.
    A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyanskii, Phys. Usp. 53, 243 (2010).CrossRefADSGoogle Scholar
  3. 3.
    C. Vandenbem, Opt. Lett. 33, 2260 (2008).CrossRefADSGoogle Scholar
  4. 4.
    T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, Appl. Phys. Lett. 96, 151101 (2010).CrossRefADSGoogle Scholar
  5. 5.
    E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, Nano Lett. 10, 2087 (2010).CrossRefADSGoogle Scholar
  6. 6.
    T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, J. Opt. Soc. Am. B 27, 1617 (2010).CrossRefADSGoogle Scholar
  7. 7.
    T. Sfez, E. Descrovi, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H.-P. Herzig, Appl. Phys. Lett. 93, 061108 (2008).CrossRefADSGoogle Scholar
  8. 8.
    E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, Opt. Lett. 33, 243 (2008).CrossRefADSGoogle Scholar
  9. 9.
    M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, The Theory of Waves (Nauka, Moscow, 1979) [in Russian].Google Scholar
  10. 10.
    E. Silberstein, P. Lalanne, J.-P. Hugonin, and Q. Cao, J. Opt. Soc. Am. A 18, 2865 (2001).CrossRefADSGoogle Scholar
  11. 11.
    E. A. Bezus, L. L. Doskolovich, N. L. Kazanskiy, V. A. Soifer, and S. I. Kharitonov, J. Opt. 12, 015001 (2010).CrossRefADSGoogle Scholar
  12. 12.
    E. A. Bezus, L. L. Doskolovich, and N. L. Kazanskiy, Appl. Phys. Lett. 98, 221108 (2011).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • E. A. Bezus
    • 1
  • L. L. Doskolovich
    • 1
  • D. A. Bykov
    • 1
  • V. A. Soifer
    • 1
  1. 1.Image Processing Systems InstituteRussian Academy of SciencesSamaraRussia

Personalised recommendations