Advertisement

JETP Letters

, Volume 99, Issue 1, pp 42–46 | Cite as

Line bundle twisted chiral de Rham complex, chiral Riemann-Roch formula and D-branes on toric manifolds

  • S. E. Parkhomenko
Article
  • 32 Downloads

Abstract

I present the results of the elliptic genus calculations in various examples of twisted chiral de Rham complex on one- and two-dimensional toric compact manifolds. The explicit calculations are made for line bundle twisted chiral de Rham complex on ℙ1, ℙ2 and Hirzebruch surface. Based on these results I propose the elliptic genus expression of the bundle twisted chiral de Rham complex for general smooth compact two dimensional toric manifold. The expression resembles Riemann-Roch formula and coincides with the later in certain limit. I interpret the result in terms of infinite tower of open string oscillator contributions and identify directly the open string boundary conditions of the corresponding bound state of D-branes.

Keywords

Line Bundle JETP Letter Open String Toric Variety Elliptic Genus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Harvey and G. Moore, Comm. Math. Phys. 197, 489 (1998); hep-th/9609017.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    P. S. Aspinwall, hep-th/0403166v1.Google Scholar
  3. 3.
    E. Sharpe, hep-th/0307245v2.Google Scholar
  4. 4.
    F. Malikov, V. Schechtman, and A. Vaintrob, alg-geom/9803041.Google Scholar
  5. 5.
    L. A. Borisov, math.AG/9809094.Google Scholar
  6. 6.
    S. E. Parkhomenko, J. Exp. Theor. Phys. 114, 39 (2012); hep-th/1105.4439.ADSCrossRefGoogle Scholar
  7. 7.
    S. E. Parkhomenko, Nucl. Phys. B 731, 360 (2005); hep-th/0412296.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    B. L. Feigin and A. M. Semikhatov, hep-th/9810059.Google Scholar
  9. 9.
    L. A. Borisov, math.AG/9904126v1.Google Scholar
  10. 10.
    V. I. Danilov, Russ. Math. Surv. 33(2), 97 (1978).CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    W. Fulton, Introduction to Toric Varieties (Princeton Univ. Press, Princeton, NJ, 1993).zbMATHGoogle Scholar
  12. 12.
    P. Griffits and J. Harris, Principles of Algebraic Geometry (Wiley-Interscience, New York, 1978).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia

Personalised recommendations