JETP Letters

, Volume 99, Issue 1, pp 9–15 | Cite as

Subcritical mirror structures in an anisotropic plasma

  • E. A. Kuznetsov
  • T. Passot
  • V. P. Ruban
  • P. L. Sulem


Based on Grad-Shafranov-like equations, a gyrotropic plasma where the pressures in the static regime are only functions of the amplitude of the local magnetic field is shown to be amenable to a variational principle with a free energy density given by the parallel tension. This approach is used to demonstrate that small-amplitude static holes constructed slightly below the mirror instability threshold identify with lump solitons of KPII (Kadomtsev-Petviashvili) equation and turn out to be unstable. It is also shown that regularizing effects such as finite Larmor radius corrections cannot be ignored in the description of large-amplitude mirror structures.


JETP Letter Sulem Mirror Mode Magnetic Field Amplitude Finite Larmor Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Vedenov and R. Z. Sagdeev, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, Vol. 3, Ed. by M. A. Leontovich (Pergamon, New York, 1958), p. 332.Google Scholar
  2. 2.
    S. P. Gary, Theory of Space Plasma Microinstabilities, Cambridge Atmospheric and Space Science Series (Cambridge Univ. Press, Cambridge, 1993).CrossRefGoogle Scholar
  3. 3.
    E. A. Kuznetsov, T. Passot, and P. L. Sulem, Phys. Rev. Lett. 98, 235003 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    E. A. Kuznetsov, T. Passot, and P. L. Sulem, JETP Lett. 86, 637 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    J. Soucek, E. Lucek, and I. Danbouras, J. Geophys. Res. 113, A04203 (2007).CrossRefGoogle Scholar
  6. 6.
    V. Génot, E. Budnik, P. Hellinger, T. Passot, G. Belmont, P. Trávníček, P. L. Sulem, E. Lucek, and I. Dandouras, Ann. Geophys. 27, 601 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    H. Grad, Notes on Magneto-Hydrodynamics I–III: General Fluid Equations, Doc. NYO-6486-I(III) (CIMS, New York Univ., 1956); H. Grad and H. Rubin, in Proceedings of the 2nd United Nations International Conference on the Peaceful Uses of Atomic Energy, UN, Geneva, Session A-5, P/386 (1958), Vol. 31, p. 190.Google Scholar
  8. 8.
    V. D. Shafranov, Sov. Phys. JETP 6, 545 (1958).ADSMathSciNetGoogle Scholar
  9. 9.
    V. D. Shafranov, in Reviews of Plasma Physics, Vol. 2, Ed. by M. A. Leontovich (Consultant Bureau, New York, 1966), p. 103.Google Scholar
  10. 10.
    N. M. Ercolani, R. Indik, A. C. Newell, and T. Passot, Nonlin. Sci. 10, 223 (2000).CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    T. G. Northrop and K. J. Whiteman, Phys. Rev. Lett. 12, 639 (1964).ADSCrossRefGoogle Scholar
  12. 12.
    H. Grad, Phys. Fluids 9, 498 (1966); Phys. Fluids 10, 137 (1967).ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    L. S. Hall and B. McNamara, Phys Fluids 18, 552 (1975).ADSCrossRefGoogle Scholar
  14. 14.
    L. E. Zakharov and V. D. Shafranov, in Reviews of Plasma Physics, Vol. 11, Ed. by B. B. Kadomtsev (Consultant Bureau, New York, 1986), p. 153.Google Scholar
  15. 15.
    E. A. Kuznetsov, T. Passot, and P. L. Sulem, JETP Lett. 96, 642 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    T. Passot, V. Ruban, and P. L. Sulem, Phys. Plasmas 13, 102310 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    V. I. Petviashvili, Sov. J. Plasma Phys. 2, 247 (1976).ADSGoogle Scholar
  18. 18.
    S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. B. Its, and V. B. Matveev, Phys. Lett. A 63, 205 (1979).ADSCrossRefGoogle Scholar
  19. 19.
    V. E. Zakharov and E. A. Kuznetsov, J. Exp. Theor. Phys. 86, 1035 (1998).ADSCrossRefGoogle Scholar
  20. 20.
    E. A. Kuznetsov and F. Dias, Phys. Rep. 507, 43 (2011).ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • E. A. Kuznetsov
    • 1
    • 2
    • 3
  • T. Passot
    • 4
  • V. P. Ruban
    • 3
  • P. L. Sulem
    • 4
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Space Research InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  4. 4.Université de Nice-Sophia AntipolisCNRS, Observatoire de la Cóte d’AzurNice Cedex 4France

Personalised recommendations