JETP Letters

, Volume 98, Issue 8, pp 507–513 | Cite as

Postselective measurement of the electronic entanglement in the system of two Mach-Zehnder interferometers with coulomb interaction

Article

Abstract

The parameters at which the maximally entangled two-particle state appears in the system of two ideal electronic Mach-Zehnder interferometers are known. In this work, the operation of nonideal devices with finite scattering in splitters and with reflection in the region of the Coulomb Interaction has been considered. It has been shown that, under the condition of postselection of experimental results, these factors can increase the observed Bell parameter to values exceeding Cirel’son’s (or Tsirelson’s) bound equal to 2√2 up to the mathematical limit equal to 4. A simple postselective measurement scheme providing B = 4 has been described. Although the results of such measurements are not as fundamental as the observation of the violation of Bell’s inequality, they can indirectly indicate the existence of an entangled state in the system. The measurement system is more stable against fluctuations of the phase than a system without postselection. Furthermore, it has been found that the proposed system is optimal for investigation of cross correlations between interferometers in the dc regime (beyond the paradigm of the violation of Bell’s inequality) because they cannot be generated by coordinated fluctuations of Aharonov-Bohm phases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).ADSCrossRefMATHGoogle Scholar
  2. 2.
    E. Shrodinger, Naturwissensch. 23, 807 (1935).ADSCrossRefGoogle Scholar
  3. 3.
    J. S. Bell, Phys. 1, 195 (1964).Google Scholar
  4. 4.
    J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).ADSCrossRefGoogle Scholar
  5. 5.
    B. Tsirelson, Lett. Math. Phys. 4, 93 (1980).ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, 91 (1982).ADSCrossRefGoogle Scholar
  7. 7.
    G. Lesovik, T. Martin, and G. Blatter, Eur. Phys. J. B 24, 287 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    P. Recher, E. Sukhorukov, and D. Loss, Phys. Rev. B 63, 165314 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    L. Hofstetter, S. Csonka, J. Nygard, and C. Schönenberger, Nature 461, 960 (2009); J. Wei and V. Chandrasekhar, Nature Phys. 6, 494 (2010); A. Das, Y. Ronen, M. Heiblum, et al., Nature Commun. 3, 1165 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Ji, Y. Chung, D. Sprinzak, et al., Nature 422, 415 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    P. Roulleau, F. Portier, D. C. Glattli, et al., Phys. Rev. B 76, 161309 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    I. Neder, N. Ofek, Y. Chung, et al., Nature 448, 333 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    I. Neder, M. Heiblum, D. Mahalu, and V. Umansky, Phys. Rev. Lett. 98, 036803 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    C. W. J. Beenakker, C. Emary, M. Kindermann, and I. L. van Velsen, Phys. Rev. Lett. 91, 147901 (2003).ADSCrossRefGoogle Scholar
  15. 15.
    P. Samuelsson, E. V. Sukhorukov, and M. Büttiker, Phys. Rev. Lett. 91, 157002 (2003); Phys. Rev. Lett. 92, 026805 (2004).ADSCrossRefGoogle Scholar
  16. 16.
    K. Kang and K. H. Lee, Physica E 40, 1395 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    J. Dressel, Y. Choi, and A. N. Jordan, Phys. Rev. B 85, 045320 (2012).CrossRefGoogle Scholar
  18. 18.
    A. A. Vyshnevyy, G. B. Lesovik, and T. Martin, Phys. Rev. B 87, 165417 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    L. S. Levitov, H. Lee, and G. B. Lesovik, J. Math. Phys. 37, 4845 (1996).ADSCrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    A. V. Lebedev, G. B. Lesovik, and G. Blatter, Phys. Rev. B 72, 245314 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    J. Keeling, I. Klich, and L. S. Levitov, Phys. Rev. Lett. 97, 116403 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    F. Hassler, B. Kung, G. B. Lesovik, and G. Blatter, AIP Conf. Proc. 1134, 113 (2008).ADSGoogle Scholar
  23. 23.
    G. Fève, A. Mahé, J.-M. Berroir, et al., Science 316, 1169 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    A. A. Vyshnevyy, A. V. Lebedev, G. B. Lesovik, and J. Blatter, Phys. Rev. B 87, 165302 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    D. W. Berry, H. Jeong, M. Stobinska, and T. C. Ralph, Phys. Rev. A 81, 012109 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2013

Authors and Affiliations

  1. 1.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations