Advertisement

JETP Letters

, Volume 98, Issue 8, pp 480–483 | Cite as

Spin-motive force and orbital-motive force: from magnon Bose-Einstein condensation to chiral Weyl superfluids

  • G. E. Volovik
Article

Abstract

Spin-motive geometric force acting on electrons in metallic ferromagnets is extended to spin-motive force in magnon Bose-Einstein condensate, which is represented by phase-coherent precession of magnetization, and to the orbital-motive force in superfluid 3He-A. In 3He-A there are two contributions to the orbitalmotive force. One of them comes from the chiral nature of this liquid. Another one originates from chiral Weyl fermions living in the vicinity of the topologically protected Weyl points, and is related to the phenomenon of chiral anomaly.

Keywords

JETP Letter Orbital Angular Momentum Gauge Field Berry Phase Spin Motive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Berger, Phys. Rev. B 33, 1572 (1986).ADSCrossRefGoogle Scholar
  2. 2.
    G. E. Volovik, J. Phys. C 20, L83 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    S. E. Barnes and S. Maekawa, Phys. Rev. Lett. 98, 246601 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    S. A. Yang, G. S. D. Beach, C. Knutson, et al., Phys. Rev. Lett. 102, 067201 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    Y. Yamane, K. Sasage, T. An, et al., Phys. Rev. Lett. 107, 236602 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    M. Hayashi, J. Ieda, Y. Yamane, et al., Phys. Rev. Lett. 108, 147202 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    N. Nakabayashi and G. Tatara, arXiv:1308.0152.Google Scholar
  8. 8.
    Yu. M. Bunkov and G. E. Volovik, in Novel Superfluids, Ed. by K. H. Bennemann and J. B. Ketterson, International Series of Monographs on Physics, No. 156 (2013), Vol. 1, Ch. 4, p. 253; arXiv:1003.4889.Google Scholar
  9. 9.
    I. E. Dzyaloshinskii and G. E. Volovik, J. Phys. 39, 693 (1978).CrossRefGoogle Scholar
  10. 10.
    V. P. Mineev and G. E. Volovik, J. Low Temp. Phys. 89, 823 (1992).ADSCrossRefGoogle Scholar
  11. 11.
    F. Wilczek, arXiv:1308.5949.Google Scholar
  12. 12.
    R. J. Zieve, Yu. Mukharsky, J. D. Close, et al., Phys. Rev. Lett. 68, 1327 (1992).ADSCrossRefGoogle Scholar
  13. 13.
    T. Sh. Misirpashaev and G. E. Volovik, JETP Lett. 56, 41 (1992).ADSGoogle Scholar
  14. 14.
    R. E. Packard, Rev. Mod. Phys. 70, 641 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Tserkovnyak and A. Brataas, Phys. Rev. B 71, 052406 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    P. M. Walmsley and A. I. Golov, Phys. Rev. Lett. 109, 215301 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    G. E. Volovik and M. Krusius, Physics 5, 130 (2012).CrossRefGoogle Scholar
  18. 18.
    H. Ikegami, Y. Tsutsumi, and K. Kono, Science 341, 59 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    N. D. Mermin and T.-L. Ho, Phys. Rev. Lett. 36, 594 (1976).ADSCrossRefGoogle Scholar
  20. 20.
    D. Vollhardt and P. Wölfle,, The Superfluid Phases of Helium 3 (Taylor and Francis, London, 1990).Google Scholar
  21. 21.
    D. N. Paulson, M. Krusius, and J. C. Wheatley, Phys. Rev. Lett. 37, 599 (1976).ADSCrossRefGoogle Scholar
  22. 22.
    G. E. Volovik, JETP Lett. 27, 573 (1978).ADSGoogle Scholar
  23. 23.
    G. E. Volovik, JETP Lett. 46, 98 (1987).ADSGoogle Scholar
  24. 24.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).MATHGoogle Scholar
  25. 25.
    G. Basar, D. E. Kharzeev, and I. Zahed, arXiv:1307.2234.Google Scholar
  26. 26.
    G. Basar, D. E. Kharzeev, and H.-U. Yee, arXiv:1305.6338.Google Scholar
  27. 27.
    D. Th. Son and N. Yamamoto, Phys. Rev. Lett. 109, 181602 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    D. Th. Son and N. Yamamoto, Phys. Rev. D 87, 085016 (2013).ADSCrossRefGoogle Scholar
  29. 29.
    V. Aji, Phys. Rev. B 85, 241101(R) (2012).ADSCrossRefGoogle Scholar
  30. 30.
    A. A. Thiele, Phys. Rev. Lett. 30, 230 (1973).ADSCrossRefGoogle Scholar
  31. 31.
    A. V. Nikiforov and E. B. Sonin, J. Exp. Theor. Phys. 58, 373 (1983).Google Scholar
  32. 32.
    G. E. Volovik, JETP Lett. 44, 185 (1986).ADSGoogle Scholar
  33. 33.
    T. D. C. Bevan, A. J. Manninen, J. B. Cook, et al., Nature 386, 689 (1997).ADSCrossRefGoogle Scholar
  34. 34.
    J. A. Sauls, Phys. Rev. B 84, 214509 (2011).ADSCrossRefGoogle Scholar
  35. 35.
    G. E. Volovik, JETP Lett. 61, 958 (1995).ADSGoogle Scholar
  36. 36.
    P. J. Heikkinen, S. Autti, V. B. Eltsov, et al., arXiv:1307.6782.Google Scholar
  37. 37.
    V. B. Eltsov, P. J. Heikkinen, and V. V. Zavjalov, arXiv:1302.0764.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2013

Authors and Affiliations

  1. 1.Low Temperature LaboratoryAalto University, School of Science and TechnologyHelsinkiFinland

Personalised recommendations