JETP Letters

, Volume 98, Issue 6, pp 342–347 | Cite as

Relationship between the giant enhancement of the Raman scattering and luminescence on nanostructured metallic surfaces

  • V. I. Kukushkin
  • A. B. Van’kov
  • I. V. Kukushkin
Condensed Matter

Abstract

The relationship between the factors of giant enhancement of luminescence and inelastic (Raman) scattering of light at planar silver nanostructures is investigated. For this purpose, the variation of the enhanced luminescence and Raman signals with the distance between the nanostructure surface and a layer of test molecules is examined. It is found that, for lines whose spectral position is close to the wavelength of the excitation laser, the enhancement factor for the Raman scattering is proportional to the square of that for the luminescence signal. As the spectral shift between the Raman lines and the laser position increases, the above dependence becomes subquadratic. It is established that the spatial scale on which the enhancement is manifested is the same for both effects and amounts to 25–30 nm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett. 26, 163 (1974).ADSCrossRefGoogle Scholar
  2. 2.
    D. L. Jeanmaire and R. P. van Duyne, J. Electroanal. Chem. 84, 1 (1977).CrossRefGoogle Scholar
  3. 3.
    M. G. Albrecht and J. A. Creighton, J. Am. Chem. Soc. 99, 5215 (1977).CrossRefGoogle Scholar
  4. 4.
    X.-M. Lin, Y. Cui, Y.-H. Xu, et al., Anal. Bioanal. Chem. 394, 1729 (2009).CrossRefGoogle Scholar
  5. 5.
    J. I. Gersten and A. Nitzan, J. Chem. Phys. 75, 1139 (1981).ADSCrossRefGoogle Scholar
  6. 6.
    S. L. McCall, P. M. Platzman, and P. A. Wolff, Phys. Lett. A 77, 381 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    D.-S. Wang, M. Kerker, and H. W. Chew, Appl. Opt. 19, 2315 (1980).ADSCrossRefGoogle Scholar
  8. 8.
    M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    A. Otto, in Light Scattering in Solids IV. Electronic Scattering, Spin Effects, SERS and Morphic Effects, Ed. by M. Cardona and G. Guntherodt (Springer, Berlin, 1984).Google Scholar
  10. 10.
    A. Otto, I. Mrozek, H. Grabhorn, and W. J. Akemann, J. Phys.: Condens. Matter 4, 1143 (1992).ADSCrossRefGoogle Scholar
  11. 11.
    M. Kerker, O. Siiman, L. A. Bumm, and D.-S. Wang, Appl. Opt. 19, 3253 (1980).ADSCrossRefGoogle Scholar
  12. 12.
    D.-S. Wang and M. Kerker, Phys. Rev. B 24, 1777 (1981).ADSCrossRefGoogle Scholar
  13. 13.
    E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, J. Phys. Chem. C 111, 13794 (2007).CrossRefGoogle Scholar
  14. 14.
    H. Xu, X.-H. Wang, M. P. Persson, et al., Phys. Rev. Lett. 93, 243002 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    B. J. Kennedy, S. Spaeth, M. Dickey, and K. T. Carron, J. Phys. Chem. B 103, 3640 (1999).CrossRefGoogle Scholar
  16. 16.
    G. Compagnini, C. Galati, and S. Pignataro, Phys. Chem. Chem. Phys. 1, 2351 (1999).CrossRefGoogle Scholar
  17. 17.
    J. A. Dieringer, A. D. McFarland, N. C. Shah, et al., Faraday Discuss. 132, 9 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    V. I. Kukushkin, A. B. Van’kov, and I. V. Kukushkin, Pis’ma Zh. Eksp. Teor. Fiz. 98, 72 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2013

Authors and Affiliations

  • V. I. Kukushkin
    • 1
  • A. B. Van’kov
    • 1
  • I. V. Kukushkin
    • 1
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations