JETP Letters

, Volume 98, Issue 4, pp 223–226 | Cite as

Observation of plasma and magnetoplasma resonances of two-dimensional electrons in a single MgZnO/ZnO heterojunction

  • V. E. Kozlov
  • A. B. Van’kov
  • S. I. Gubarev
  • I. V. Kukushkin
  • J. Falson
  • D. Maryenko
  • Y. Kozuka
  • A. Tsukazaki
  • M. Kawasaki
  • J. H. Smet
Condensed Matter

Abstract

The magnetoluminescence of the two-dimensional electron system in a single MgxZn1 − xO/ZnO hetero-junction (x = 0.02) at a temperature of 0.3 K in magnetic fields up to 14 T has been studied. The concentration of two-dimensional electrons in the structure under study has been determined from the oscillations of the luminescence intensity as a function of the magnetic field. The value thus obtained is close to the one derived from transport measurements. The resonance corresponding to plasma excitations of two-dimensional electrons has been observed using optical detection of microwave absorption. In a magnetic field, the lower branch of magnetoplasma excitations, which corresponds to the propagation of edge magnetoplasmons in a structure with nearly square geometry, has been observed and investigated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Zu, Z. K. Tang, G. K. L. Wong, et al., Solid State Commun. 103, 459 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    D. M. Bagnall, Y. F. Chen, Z. Zhu, et al., Appl. Phys. Lett. 70, 2230 (1997).ADSCrossRefGoogle Scholar
  3. 3.
    J. Falson, D. Maryenko, Y. Kozuka, et al., Appl. Phys. Express 4, 091101 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    D. Maryenko, J. Falson, Y. Kozuka, et al., Phys. Rev. Lett. 108, 186803 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    A. Tsukazaki, A. Ohtomo, T. Kita, et al., Science 315,1388 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    A. Tsukazaki, S. Akasaka, K. Nakahara, et al., Nature Mater. 9, 889 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    W. S. Baer, Phys. Rev. 154, 785 (1967)ADSCrossRefGoogle Scholar
  8. 8.
    A. Tsukazaki et al., Phys. Rev. B 78, 233308 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    I. V. Kukushkin, J. H. Smet, S. A. Mikhailov, et al., Phys. Rev. Lett. 90, 156801 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    I. V. Kukushkin and V. B. Timofeev, Adv. Phys. 45, 147 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    S. J. Allen, H. L. Stormer, and J. C. M. Hwang, Phys. Rev. B 28, 4875 (1983).ADSCrossRefGoogle Scholar
  12. 12.
    I. V. Kukushkin, J. H. Smet, V. A. Kovalskii, et al., Phys. Rev. B 72, 161317 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Kasahara, Y. Oshima, J. Falson, et al., Phys. Rev. Lett. 109, 246401 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    S. J. Allen, H. L. Stormer, and J. C. M. Hwang, Phys. Rev. B 28, 4875 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2013

Authors and Affiliations

  • V. E. Kozlov
    • 1
  • A. B. Van’kov
    • 1
  • S. I. Gubarev
    • 1
  • I. V. Kukushkin
    • 1
    • 6
  • J. Falson
    • 2
  • D. Maryenko
    • 3
  • Y. Kozuka
    • 2
  • A. Tsukazaki
    • 4
    • 5
  • M. Kawasaki
    • 2
    • 3
  • J. H. Smet
    • 6
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Department of Applied Physics and Quantum-Phase Electronics Center (QPEC)University of TokyoTokyoJapan
  3. 3.RIKEN Center for Emergent Matter Science (CEMS)WakoJapan
  4. 4.Institute for Materials ResearchTohoku UniversitySendaiJapan
  5. 5.PRESTOJapan Science and Technology Agency (JST)TokyoJapan
  6. 6.Max-Planck-Institut für FestkörperforschungStuttgartGermany

Personalised recommendations