Advertisement

JETP Letters

, Volume 98, Issue 4, pp 233–236 | Cite as

Neutron diffraction study of polycrystalline 4He in a porous medium

  • I. V. Kalinin
  • E. I. Kats
  • M. Koza
  • V. V. Lauter
  • H. Lauter
  • A. V. Puchkov
Condensed Matter
  • 47 Downloads

Abstract

The elastic (diffraction) component of the neutron scattering cross section, which carries information on the atomic structure of solid helium confined in silica aerogel, has been studied. Analysis of the crystalline structure of solid helium in a porous medium, which is determined from the existing neutron diffraction data, indicates that the superfluid phase is localized inside a hexagonal close-packed phase and is not present in a body-centered cubic crystal. It has also been revealed that the addition of the 3He isotope changes the structure of solid helium and hardly affects the formation of a superfluid phase.

Keywords

JETP Letter Bragg Peak Kalinin Silica Aerogel Torsion Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Kim and M. H. W. Chan, Nature 427, 225 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    I. V. Kalinin, E. Kats, M. Koza, et al., JETP Lett. 87,645 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    I. V. Kalinin, E. Kats, M. Koza, et al., J. Exp. Theor. Phys. 111, 215 (2010).ADSCrossRefGoogle Scholar
  4. 4.
  5. 5.
    H. Lauter, V. Apaja, I. Kalinin, et al., Phys. Rev. Lett. 107, 265301 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    D. G. Henshaw, Phys. Rev. 109, 328 (1958).ADSCrossRefGoogle Scholar
  7. 7.
    M. R. Gibbs, K. H. Andersen, W. G. Stirling, and H. Schober, J. Phys.: Condens. Matter 11, 603 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    H. J. Lauter, I. V. Bogoyavlenskii, A. V. Puchkov, et al., Appl. Phys. A 74, 1547 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    H. Wiechert, H. Lauter, and B. Stuehn, J. Low Temp. Phys. 48, 209 (1982).ADSCrossRefGoogle Scholar
  10. 10.
    D. Wallacher, M. Rheinstaedter, T. Hansen, and K. Knorr, J. Low Temp. Phys. 138, 1013 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    J. V. Pearce, J. Bossy, H. Schober, et al., Phys. Rev. Lett. 93, 145303 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    N. Mulders, J. T. West, M. H. W. Chan, et al., Phys. Rev. Lett. 101, 165303 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    L. D. Landau, J. Phys. USSR 11, 91 (1947).Google Scholar
  14. 14.
    J. Als-Nielsen and O. Dietrich, Phys. Rev. 133, B925 (1964).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2013

Authors and Affiliations

  • I. V. Kalinin
    • 1
  • E. I. Kats
    • 2
  • M. Koza
    • 3
  • V. V. Lauter
    • 4
  • H. Lauter
    • 4
  • A. V. Puchkov
    • 1
  1. 1.Leipunsky Institute of Physics and Power EngineeringObninsk, Kaluga regionRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Institut Laue-LangevinGrenoble, Cedex 9France
  4. 4.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations