JETP Letters

, Volume 98, Issue 4, pp 219–222 | Cite as

Vibrational energy transport in molecular wires

  • V. A. Benderskii
  • A. S. Kotkin
  • I. V. Rubtsov
  • E. I. Kats
Condensed Matter

Abstract

Motivated by recent experimental observation (see, e.g., I. V. Rubtsov, Acc. Chem. Res. 42, 1385 (2009)) of vibrational energy transport in (CH2O)N and (CF2)N molecular chains (N = 4–12), in this paper we present and solve analytically a simple one dimensional model to describe theoretically these data. To mimic multiple conformations of the molecular chains, our model includes random off-diagonal couplings between neigh-boring sites. For the sake of simplicity, we assume Gaussian distribution with dispersion σ for these coupling matrix elements. Within the model we find that initially locally excited vibrational state can propagate along the chain. However, the propagation is neither ballistic nor diffusion like. The time Tm for the first passage of the excitation along the chain, scales linearly with N in the agreement with the experimental data. Distribution of the excitation energies over the chain fragments (sites in the model) remains random, and the vibrational energy, transported to the chain end at t = Tm is dramatically decreased when σ is larger than characteristic interlevel spacing in the chain vibrational spectrum. We do believe that the problem we have solved is not only of intellectual interest (or to rationalize mentioned above experimental data) but also of relevance to design optimal molecular wires providing fast energy transport in various chemical and biological reactions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. V. Kurochkin, S. G. Naraharisetty, and I. V. Rubtsov, Proc. Natl. Acad. Sci. 104, 14209 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    I. V. Rubtsov, Acc. Chem. Res. 42, 1385 (2009).CrossRefGoogle Scholar
  3. 3.
    Z. Lin, N. Jayawickramarajajah, and I. V. Rubtsov, Phys. Chem. Chem. Phys. 14, 10445 (2012).CrossRefGoogle Scholar
  4. 4.
    V. M. Kasyanenko, P. Keifer, and I. V. Rubtsov, J. Chem. Phys. 136, 144503 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    N. I. Rubtsova and I. V. Rubtsov, J. Chem. Phys. (2013, in press).Google Scholar
  6. 6.
    T. Ishioka, W. Yan, H. L. Strauss, and R. G. Snyder, Spectrochim. Acta, Part A 59, 671 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    T. User and W. H. Miller, Phys. Rep. 199, 73 (1991).ADSCrossRefGoogle Scholar
  8. 8.
    T. Papenbrock and H. A. Weidenmuller, Rev. Mod. Phys. 79, 997 (2007).MathSciNetADSCrossRefMATHGoogle Scholar
  9. 9.
    I. M. Lifshitz, S. A. Gredescul, and L. A. Pastur, Intro-duction to the Theory of Disordered Systems (Wiley, New York, 1988).Google Scholar
  10. 10.
    M. Janssen, Fluctuations and Localization in Mesoscopic Electron Systems, World Scientific Lecture Notes in Physics, vol. 64 (World Scientific, Singapore, 2001).Google Scholar
  11. 11.
    D. Segal, A. Nitzan, and P. Hanggi, J. Chem. Phys. 119, 6840 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    M. Schade and P. Hamm, J. Chem. Phys. 131, 044511 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    V. A. Benderskii and E. I. Kats, JETP Lett. 94, 459 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    V. A. Benderskii and E. I. Kats, J. Exp. Theor. Phys. 116, 1 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    V. A. Benderskii, A. S. Kotkin, and E. I. Kats, Phys. Lett. A 377, 737 (2013).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    O. P. Charkin, in preparation.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2013

Authors and Affiliations

  • V. A. Benderskii
    • 1
  • A. S. Kotkin
    • 1
  • I. V. Rubtsov
    • 2
  • E. I. Kats
    • 3
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Department of ChemistryTulane UniversityLA New OrleansUSA
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations