JETP Letters

, Volume 97, Issue 12, pp 686–689 | Cite as

Rogue waves at low Benjamin-Feir indices: Numerical study of the role of nonlinearity

  • V. P. Ruban
Nonlinear Dynamics


The nonlinear interaction between waves in incoherent sea states is weaker than their dispersion. In this situation, random space-time focusing is the main mechanism of the formation of rogue waves. The numerical simulation has indicated that nonlinearity becomes important at the final stage of focusing and can significantly change predictions of the so-called second-order theory concerning the parameters of rogue waves. The elongation of the crest of a rogue wave as compared to that predicted by the second-order theory is an important effect promoting the “weighting of the tails” of the distribution function of the vertical deviation of the free surfaces.


Crest Direct Numerical Simulation JETP Letter Wave Field Rogue Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Kharif and E. Pelinovsky, Eur. J. Mech. B: Fluids 22, 603 (2003).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    K. Dysthe, H. E. Krogstad, and P. Müller, Ann. Rev. Fluid Mech. 40, 287 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    E. Pelinovsky and C. Kharif, Eur. J. Mech. B: Fluids 25, 535 (2006).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    N. Akhmediev and E. Pelinovsky, Eur. Phys. J. Spec. Top. 185, 1 (2010).CrossRefGoogle Scholar
  5. 5.
    P. A. E. M. Janssen, J. Phys. Oceanogr. 33, 863 (2003).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    V. E. Zakharov, J. Appl. Mech. Tech. Phys. 9, 190 (1968).ADSCrossRefGoogle Scholar
  7. 7.
    T. B. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417 (1967).ADSMATHCrossRefGoogle Scholar
  8. 8.
    V. E. Zakharov, A. I. Dyachenko, and O. A. Vasilyev, Eur. J. Mech. B: Fluids 21, 283 (2002).MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    A. I. Dyachenko and V. E. Zakharov, JETP Lett. 81, 255 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    V. E. Zakharov, A. I. Dyachenko, and O. A. Prokofiev, Eur. J. Mech. B: Fluids 25, 677 (2006).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    V. P. Ruban, Phys. Rev. Lett. 99, 044502 (2007).Google Scholar
  12. 12.
    D. H. Peregrine, Adv. Appl. Mech. 16, 9 (1976).MATHCrossRefGoogle Scholar
  13. 13.
    B. S. White and B. Fornberg, J. Fluid Mech. 355, 113 (1998).MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    I. V. Lavrenov and A. V. Porubov, Eur. J. Mech. B: Fluids 25, 574 (2006).MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    V. P. Ruban, JETP Lett. 95, 486 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    H. Socquet-Juglard, K. Dysthe, K. Trulsen, et al., J. Fluid Mech. 542, 195 (2005).MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    M. Onorato, A. R. Osborne, M. Serio, et al., Eur. J. Mech. B: Fluids 25, 586 (2006).MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    O. Gramstad and K. Trulsen, J. Fluid Mech. 582, 463 (2007).MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    M. Onorato, T. Waseda, A. Toffoli, et al., Phys. Rev. Lett. 102, 114502 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    G. Z. Forristall, J. Phys. Oceanogr. 30, 1931 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    A. Toffoli, E. Bitner-Gregersen, M. Onorato, and A. V. Babanin, Ocean Eng. 35, 1784 (2008).CrossRefGoogle Scholar
  22. 22.
    V. P. Ruban and J. Dreher, Phys. Rev. E 72, 066303 (2005).Google Scholar
  23. 23.
    V. P. Ruban, Eur. Phys. J. Spec. Top. 185, 17 (2010).CrossRefGoogle Scholar
  24. 24.
    V. P. Ruban, arXiv:1107.1307.Google Scholar
  25. 25.
    C. Fochesato, S. Grilli, and F. Dias, Wave Motion 44, 395 (2007).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations