JETP Letters

, Volume 97, Issue 9, pp 525–527 | Cite as

Influence of electric current and magnetic field on terahertz photoconductivity in Pb1 − x Sn x Te(In)

  • L. I. Ryabova
  • A. V. Nicorici
  • S. N. Danilov
  • D. R. Khokhlov
Condensed Matter


Photoconductivity of Pb1 − x Sn x Te(In) solid solutions in the terahertz spectral range is defined by a new type of local electron states linked to the quasi-Fermi level. The paper deals with investigation of the influence of electric current and magnetic field on the amplitude of the terahertz photoconductivity in Pb1 − x Sn x Te(In) alloys of different composition. It is shown that the density of local electron states responsible for the positive persistent photoconductivity decreases with increasing electric current via a sample, as well as with transition to the hole conductivity in samples with a high content of tin telluride (x > 0.26). It is found that the magnetic field dependence of the positive photoconductivity is non-monotonous and has a maximum. The maximum position in magnetic field is proportional to the terahertz radiation quantum energy. Mechanisms responsible for the effects observed are discussed.


JETP Letter PbTe Quasi Fermi Level Local Electron State Persistent Photoconductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. R. Khokhlov, I. I. Ivanchik, S. N. Raines, et al., Appl. Phys. Lett. 76, 2835 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    D. Khokhlov, Int. J. Mod. Phys. B 18, 2223 (2004).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    V. Chernichkin, A. Dobrovolsky, V. Kasiyan, et al., Europhys. Lett. 100, 17008 (2012).CrossRefGoogle Scholar
  4. 4.
    B. A. Volkov, L. I. Ryabova, and D. R. Khokhlov, Phys. Usp. 45, 819 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    L. I. Ryabova and D. R. Khokhlov, JETP Lett. 80, 133 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    B. A. Akimov, N. B. Brandt, S. O. Klimonskiy, et al., Phys. Lett. A 88, 483 (1982).ADSCrossRefGoogle Scholar
  7. 7.
    D. Khokhlov, L. Ryabova, A. Nicorici, et al., Appl. Phys. Lett. 93, 264103 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    A. V. Galeeva, L. I. Ryabova, A. V. Nikorich, et al., JETP Lett. 91, 35 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    P. Schneider, J. Kainz, S. D. Ganichev, et al., J. Appl. Phys. 96, 420 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    S. D. Ganichev, E. Ziemann, Th. Gleim, et al., Phys. Rev. Lett. 80, 2409 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    S. D. Ganichev, Ya. V. Terent’ev, and I. D. Yaroshetskii, Sov. Tech. Phys. Lett. 11, 20 (1985).Google Scholar
  12. 12.
    E. Ziemann, S. D. Ganichev, I. N. Yassievich, et al., J. Appl. Phys. 87, 3843 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    Z. D. Kvon, S. N. Danilov, N. N. Mikhailov, et al., Physica E 40, 1885 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    G. Nimtz and B. Schlicht, Narrow-Gap Lead Salts (Springer, Berlin, 1983).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • L. I. Ryabova
    • 1
  • A. V. Nicorici
    • 2
  • S. N. Danilov
    • 3
  • D. R. Khokhlov
    • 1
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Institute of Applied PhysicsAcademy of Sciences of MoldovaKishinevMoldova
  3. 3.University of RegensburgRegensburgGermany

Personalised recommendations