Advertisement

JETP Letters

, Volume 97, Issue 8, pp 478–482 | Cite as

Peculiarities of performance of the spin valve for the superconducting current

  • P. V. Leksin
  • A. A. Kamashev
  • N. N. Garif’yanov
  • I. A. Garifullin
  • Ya. V. Fominov
  • J. Schumann
  • C. Hess
  • V. Kataev
  • B. Büchner
Condensed Matter

Abstract

The spin valve effect for the superconducting current based on the superconductor/ferromagnet proximity effect has been studied for a CoO x /Fe1/Cu/Fe2/Cu/Pb multilayer. The magnitude of the effect ΔT c = T c AP T c P , where T c P and T c AP are the superconducting transition temperatures for the parallel (P) and antiparallel (AP) orientation of magnetizations, respectively, has been measured for different thicknesses of the Fe1 layer d Fe1. The obtained dependence of the effect on d Fe1 reveals that ΔT c can be increased in comparison with the case of a half-infinite Fe1 layer considered by the previous theory. A maximum of the spin valve effect occurs at d Fe1d Fe2. At the optimal value of d Fe1 almost full switching from the normal to the superconducting state when changing the mutual orientation of magnetizations of the iron layers Fe1 and Fe2 from P to AP is demonstrated.

Keywords

JETP Letter Superconducting State Spin Valve Iron Layer Superconducting Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Oh, D. Youm, and M. R. Beasley, Appl. Phys. Lett. 71, 2376 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    L. R. Tagirov, Phys. Rev. Lett. 83, 2058 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    A. I. Buzdin, A. V. Vedyayev, and N. V. Ryzhanova, Europhys. Lett. 48, 686 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    J. Y. Gu, C.-Y. You, J. S. Jiang, et al., Phys. Rev. Lett. 89, 267001 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    C.-Y. You, Ya. B. Bazaliy, J. Y. Gu, et al., Phys. Rev. B 70, 014505 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    A. Potenza and C. H. Marrows, Phys. Rev. B 71, 180503 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    V. Peña, Z. Sefrioui, D. Arias, et al., Phys. Rev. Lett. 94, 057002 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    I. C. Moraru, W. P. Pratt, Jr., and N. O. Birge, Phys. Rev. Lett. 96, 037004 (2006); Phys. Rev. B 74, 220507(R) (2006).ADSCrossRefGoogle Scholar
  9. 9.
    G.-X. Miao, A. V. Ramos, and J. Moodera, Phys. Rev. Lett. 101, 137001 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    K. Westerholt, D. Sprungmann, H. Zabel, et al., Phys. Rev. Lett. 95, 097003 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    G. Nowak, H. Zabel, K. Westerholt, et al., Phys. Rev. B 78, 134520 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    G. Nowak, K. Westerholt, and H. Zabel, Supercond. Sci. Technol. 26, 025004 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    Ya. V. Fominov, A. A. Golubov, and M. Yu. Kupriyanov, JETP Lett. 77, 510 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    Ya. V. Fominov, A. A. Golubov, T. Yu. Karminskaya, et al., JETP Lett. 91, 308 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    P. V. Leksin, N. N. Garif’yanov, I. A. Garifullin, et al., Appl. Phys. Lett. 97, 102505 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    P. V. Leksin, N. N. Garif’yanov, I. A. Garifullin, et al., Phys. Rev. Lett. 106, 067005 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    P. V. Leksin, N. N. Garif’yanov, I. A. Garifullin, et al., Phys. Rev. B 85, 024502 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    P. V. Leksin, N. N. Garif’yanov, I. A. Garifullin, et al., Phys. Rev. Lett. 109, 057005 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    L. Lazar, K. Westerholt, H. Zabel, et al., Phys. Rev. B 61, 3711 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    Ya. V. Fominov, N. M. Chtchelkatchev, and A. A. Golubov, Phys. Rev. B 66, 014507 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • P. V. Leksin
    • 1
  • A. A. Kamashev
    • 1
  • N. N. Garif’yanov
    • 1
  • I. A. Garifullin
    • 1
  • Ya. V. Fominov
    • 2
    • 3
  • J. Schumann
    • 4
  • C. Hess
    • 4
  • V. Kataev
    • 4
  • B. Büchner
    • 4
    • 5
  1. 1.Zavoisky Physical-Technical InstituteRussian Academy of SciencesKazanRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow regionRussia
  4. 4.Leibniz Institute for Solid State and Materials Research IFW DresdenDresdenGermany
  5. 5.Institut für FestkörperphysikTechnische Universität DresdenDresdenGermany

Personalised recommendations