JETP Letters

, Volume 97, Issue 7, pp 400–403 | Cite as

On the electronic spectrum in curved graphene nanoribbons

  • A. V. Zhukov
  • R. Bouffanais
  • N. N. Konobeeva
  • M. B. Belonenko
Condensed Matter

Abstract

Using the formalism of the Dirac equation for curved space-time in the Friedmann model of a non-stationary universe, we calculate the electronic spectrum and density of states in curved graphene nanoribbons. Based on the obtained density of states we further study the current-voltage characteristics of the nanoribbonmetal tunnel junction. The dependence on the geometric characteristics of the nanoribbon has been revealed, showing a great influence of such parameters as the number of carbon atoms and the characteristic frequency of distortion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science 306, 666 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Nature 438, 197 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Zhang, J. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    S. Stankovich, D. A. Dikin, G. H. Dommett, et al., Nature 442, 282 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    A. Cortijo and M. A. H. Vozmediano, Nucl. Phys. B 763, 293 (2007).ADSMATHCrossRefGoogle Scholar
  6. 6.
    A. Cortijo and M. A. H. Vozmediano, Europhys. Lett. 77, 47002 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    D. V. Kolesnikov and V. A. Osipov, JETP Lett. 87, 419 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    M. A. H. Vozmediano, M. I. Katsnelson, and F. Guinea, Phys. Rep. 296, 109 (2010).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    M. B. Belonenko, N. G. Lebedev, and N. N. Yanyushkina, J. Nanophoton. 4, 041670 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th ed. (Butterworth-Heinemann, London, 2000).Google Scholar
  12. 12.
    N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Univ. Press, Cambridge, 1984).MATHGoogle Scholar
  13. 13.
    M. B. Belonenko, N. G. Lebedev, N. N. Yanyushkina, et al., Solid State Commun. 151, 1147 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, Heidelberg, 2001).CrossRefGoogle Scholar
  15. 15.
    R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. V. Zhukov
    • 1
  • R. Bouffanais
    • 1
  • N. N. Konobeeva
    • 2
  • M. B. Belonenko
    • 3
  1. 1.Singapore University of Technology and DesignSingaporeSingapore
  2. 2.Volgograd State UniversityVolgogradRussia
  3. 3.Laboratory of NanotechnologyVolgograd Institute of BusinessVolgogradRussia

Personalised recommendations