Advertisement

JETP Letters

, Volume 97, Issue 6, pp 301–306 | Cite as

Nambu sum rule in the NJL Models: from superfluidity to top quark condensation

  • G. E. Volovik
  • M. A. Zubkov
Fields, Particles, and Nuclei

Abstract

It may appear that the recently found resonance at 125 GeV is not the only Higgs boson. We point out the possibility that the Higgs bosons appear in models of top-quark condensation, where the masses of the bosonic excitations are related to the top quark mass by the sum rule similar to the Nambu sum rule of the NJL models [1]. This rule was originally considered by Nambu for superfluid 3He-B and for the BCS model of superconductivity. It relates the two masses of bosonic excitations existing in each channel of Cooper pairing to the fermion mass. An example of the Nambu partners is provided by the amplitude and the phase modes in the BCS model describing Cooper pairing in the s-wave channel. This sum rule suggests the existence of the Nambu partners for the 125 GeV Higgs boson. Their masses can be predicted by the Nambu sum rule under certain circumstances. For example, if there are only two states in the given channel, the mass of the Nambu partner is ∼ 325 GeV. They together satisfy the Nambu sum rule M 1 2 + M 2 2 = 4M t 2 , where M t ∼ 174 GeV is the mass of the top quark. If there are two doubly degenerated states, then the second mass is ∼210 GeV. In this case the Nambu sum rule is 2M 1 2 + 2M 2 2 = 4M t 2 . In addition, the properties of the Higgs modes in superfluid 3He-A, where the symmetry breaking is similar to that of the Standard Model of particle physics, suggest the existence of two electrically charged Higgs particles with masses around 245 GeV, which together also obey the Nambu sum rule M + 2 + M 2 = 4M t 2 .

Keywords

Higgs Boson Symmetry Breaking JETP Letter Symmetry Breaking Pattern Fermionic Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Nambu, Physica D 15, 147 (1985); in BCS: 50 Years, Ed. by L. N. Cooper and D. Feldman (World Scientific, Singapore, 2010).ADSCrossRefGoogle Scholar
  2. 2.
    Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).ADSCrossRefGoogle Scholar
  3. 3.
    F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    P. Higgs, Phys. Rev. Lett. 13, 508 (1964).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    G. Guralnik, C. R. Hagen, and T. W. B. Kibble, Phys. Rev. Lett. 13, 585 (1964).ADSCrossRefGoogle Scholar
  6. 6.
    CMS Collab., arXiv:1209.3937; CMS-HIG-12-010; CERN-PH-EP-2012-253; CMS Collab., Phys. Lett. B 716, 30 (2012); arXiv:1207.7235; CMS-HIG-12-028; CERN-PH-EP-2012-220; CMS Collab., arXiv:1207.2666; CMS-HIG-12-005; CERN-PH-EP-2012-169.ADSCrossRefGoogle Scholar
  7. 7.
    ATLAS Collab., Phys. Lett. B 716, 1 (2012); CERN-PH-EP-2012-218, arXiv:1207.7214 [hep-ex].ADSCrossRefGoogle Scholar
  8. 8.
  9. 9.
  10. 10.
    CDF Collab., CDF/PUB/EXOTICS/PUBLIC/10603 (2011).Google Scholar
  11. 11.
    CMS Collab., Phys. Rev. Lett. 108, 111804 (2012); arXiv:1202.1997.ADSCrossRefGoogle Scholar
  12. 12.
    K. A. Meissner and H. Nicolai, arXiv:1208.5653.Google Scholar
  13. 13.
    L. Maiani, A. D. Polosa, and V. Riquer, arXiv:1202.5998.Google Scholar
  14. 14.
    ATLAS Collab., Phys. Lett. B 710, 49 (2012). http://atlas.ch/news/2011/Higgs-note.pdf.ADSCrossRefGoogle Scholar
  15. 15.
    G. E. Volovik and M. A. Zubkov, arXiv:1209.0204.Google Scholar
  16. 16.
    V. A. Miransky, M. Tanabashi, and K. Yamawaki, Phys. Lett. B 221, 177 (1989); Mod. Phys. Lett. A 4, 1043 (1989).ADSCrossRefGoogle Scholar
  17. 17.
    W. A. Bardeen, Ch. T. Hill, and M. Lindner, Phys. Rev. D 41, 1647 (1990).ADSCrossRefGoogle Scholar
  18. 18.
    D. Vollhardt and P. Wölfle,, The Superfluid Phases of Helium 3 (Taylor Francis, London, 1990).Google Scholar
  19. 19.
    S. Gazit, D. Podolsky, and A. Auerbach, arXiv:1212.3759Google Scholar
  20. 20.
    Y. Barlas and C. M. Varma, arXiv:1206.0400.Google Scholar
  21. 21.
    K. Chen, L. Liu, Y. Deng, et al., arXiv:1301.3139.Google Scholar
  22. 22.
    R. Movshovich, E. Varoquaux, N. Kim, and D. M. Lee, Phys. Rev. Lett. 61, 1732 (1988).ADSCrossRefGoogle Scholar
  23. 23.
    C. A. Collett, J. Pollanen, J. I. A. Li, et al., arXiv:1208.2650.Google Scholar
  24. 24.
    G. E. Volovik and T. Vachaspati, Int. J. Mod. Phys. B 10, 471 (1996); cond-mat/9510065.ADSCrossRefGoogle Scholar
  25. 25.
    P. N. Brusov and V. N. Popov, Sov. Phys. JETP 52, 945 (1980).ADSGoogle Scholar
  26. 26.
    G. E. Volovik and M. V. Khazan, Sov. Phys. JETP 55, 867 (1982); Sov. Phys. JETP 58, 551 (1983).Google Scholar
  27. 27.
    P. N. Brusov and V. N. Popov, Sov. Phys. JETP 53, 804 (1981).Google Scholar
  28. 28.
    C. V. Roubillard, arXiv:hep-ph/0503289; C. Valenzuela, Phys. Rev. D 71, 095014 (2005); arXiv:hepph/0503111.CrossRefGoogle Scholar
  29. 29.
    M. Hashimoto and V. A. Miransky, Phys. Rev. D 81, 055014 (2010); arXiv:0912.4453.ADSCrossRefGoogle Scholar
  30. 30.
    M. A. Zubkov, arXiv:1301.6971.Google Scholar
  31. 31.
    M. Alford, K. Rajagopal, and F. Wilczek, Nucl. Phys. B 537, 443 (1999).ADSCrossRefGoogle Scholar
  32. 32.
    M. Buballa, Phys. Rep. 407, 205 (2005).ADSCrossRefGoogle Scholar
  33. 33.
    D. Ebert, K. G. Klimenko, and V. L. Yudichev, Eur. Phys. J. C 53, 65 (2008).ADSCrossRefGoogle Scholar
  34. 34.
    R. Anglani, M. Mannarelli, and M. Ruggieri, New J. Phys. 13, 055002 (2011).ADSCrossRefGoogle Scholar
  35. 35.
    M. Eto, M. Nitta, and N. Yamamoto, Phys. Rev. Lett. 104, 161601 (2010); M. Eto and M. Nitta, Phys. Rev. D 80, 125007 (2009).ADSCrossRefGoogle Scholar
  36. 36.
    G. L. Alberghi, A. Y. Kamenshchik, A. Tronconi, et al., JETP Lett. 88, 705 (2008); arXiv:0804.4782.ADSCrossRefGoogle Scholar
  37. 37.
    V. P. Frolov and D. Fursaev, Phys. Rev. D 58, 124009 (1998); arXiv:hep-th/9806078.MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    V. Frolov, D. Fursaev, and A. Zelnikov, J. High Energy Phys. 0303, 038 (2003); arXiv:hep-th/0302207.MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Ya. B. Zeldovich, Sov. Phys. Usp. 11, 381 (1968).ADSCrossRefGoogle Scholar
  40. 40.
    M. Veltman, Acta Phys. Polon. B 12, 437 (1981).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Lounasmaa LaboratoryAalto University, School of Science and TechnologyEspooFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Institute for Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations