Advertisement

JETP Letters

, Volume 97, Issue 6, pp 367–377 | Cite as

Ferromagnetism of zinc oxide nanograined films

  • B. B. Straumal
  • S. G. Protasova
  • A. A. Mazilkin
  • G. Schütz
  • E. Goering
  • B. Baretzky
  • P. B. Straumal
Scientific Summaries

Abstract

The reasons for the appearance of ferromagnetic properties of zinc oxide have been reviewed. It has been shown that ferromagnetism appears only in polycrystals at a quite high density of grain boundaries. The critical size of grains is about 20 nm for pure ZnO and more than 40 μm for iron-doped zinc oxide. The solubility of manganese and cobalt in zinc oxide increases significantly with a decrease in the size of grains. The dependences of the saturation magnetization on the concentrations of cobalt, manganese, and ion are nonmonotonic. Even if the size of grains is below the critical value, the ferromagnetic properties of zinc oxide depend significantly on the texture of films and the structure of amorphous intercrystallite layers.

Keywords

Saturation Magnetization Zinc Oxide JETP Letter Ferromagnetic Property Zinc Oxide Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Dietl, H. Ohno, F. Matsukura, et al., Science 287, 1019 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    T. Dietl, Nature Mater. 9, 965 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    B. Straumal, A. Mazilkin, P. Straumal, et al., Int. J. Nanomanufact. 2, 253 (2008).CrossRefGoogle Scholar
  4. 4.
    B. B. Straumal, A. A. Mazilkin, S. G. Protasova, et al., Acta Mater. 56, 6246 (2008).CrossRefGoogle Scholar
  5. 5.
    B. B. Straumal, B. Baretzky, A. A. Mazilkin, et al., J. Eur. Ceram. Soc. 29, 1963 (2009).CrossRefGoogle Scholar
  6. 6.
    B. B. Straumal, A. A. Mazilkin, S. G. Protasova, et al., Phys. Rev. B 79, 205206 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    B. B. Straumal, S. G. Protasova, A. A. Mazilkin, et al., J. Appl. Phys. 108, 073923 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    B. B. Straumal, A. A. Myatiev, P. B. Straumal, et al., JETP Lett. 92, 396 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    B. B. Straumal, A. A. Mazilkin, S. G. Protasova, et al., Phys. Status Solidi B 248, 581 (2011).Google Scholar
  10. 10.
    B. B. Straumal, A. A. Mazilkin, S. G. Protasova, et al., Thin Solid Films 520, 1192 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    B. B. Straumal, S. G. Protasova, A. A. Mazilkin, et al., Mater. Lett. 71, 21 (2012).CrossRefGoogle Scholar
  12. 12.
    B. B. Straumal, A. A. Mazilkin, S. G. Protasova, et al., Phil. Mag. 93, 1371 (2013).CrossRefGoogle Scholar
  13. 13.
    B. B. Straumal, S. G. Protasova, A. A. Mazilkin, et al., Beilstein J. Nanotechnol. 4 (2013, in press).Google Scholar
  14. 14.
    D. McLean, Grain Boundaries in Metals (Clarendon, Oxford, 1957).Google Scholar
  15. 15.
    M. L. Trudeau, J. Y. Huot, and R. Schulz, Appl. Phys. Lett. 58, 2764 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    K. Suzuki, A. Makino, A. Inoue, et al., J. Appl. Phys. 70, 6232 (1991).ADSCrossRefGoogle Scholar
  17. 17.
    V. Heera, K. N. Madhusoodanan, W. Skorupa, et al., J. Appl. Phys. 99, 123716 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    B. B. Straumal, S. V. Dobatkin, A. O. Rodin, et al., Adv. Eng. Mater. 13, 463 (2011).CrossRefGoogle Scholar
  19. 19.
    C. Lemier, and J. Weissmuller, Acta Mater. 55, 1241 (2007).CrossRefGoogle Scholar
  20. 20.
    A. Rizea, D. Chirlesan, C. Petot, et al., Solid State Ionics 146, 341 (2002).CrossRefGoogle Scholar
  21. 21.
    D. F. Wang, S. Y. Park, H. W. Lee, et al., Phys. Status Solidi A 204, 4029 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    N. Gopalakrishnan, J. Elanchezhiyan, K. P. Bhuvana, et al., Scr. Mater. 58, 930 (2008).CrossRefGoogle Scholar
  23. 23.
    H. Liu, J. Yang, Y. Zhang, et al., Phys.: Condens. Matter 21, 145803 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    P. Wu, G. Saraf, Y. Lu, et al., Appl. Phys. Lett. 89, 012508 (2006).ADSCrossRefGoogle Scholar
  25. 25.
    Y. Lin, D. Jiang, F. Lin, et al., J. Alloys Comp. 436, 30 (2007).CrossRefGoogle Scholar
  26. 26.
    D. Karmakar, S. K. Mandal, R. M. Kadam, et al., Phys. Rev. B 75, 144404 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    C. J. Cong and K. L. Zhang, Phys. Status Solidi A 243, 2764 (2006).CrossRefGoogle Scholar
  28. 28.
    P. Thakur, K. H. Chae, J.-Y. Kim, et al., Appl. Phys. Lett. 91, 162503 (2007).ADSCrossRefGoogle Scholar
  29. 29.
    P. Abbamonte, L. Venama, A. Rusydi, et al., Science 297, 581 (2002).ADSCrossRefGoogle Scholar
  30. 30.
    E. Pellegrin, N. Nucker, J. Fink, et al., Phys. Rev. B 47, 3354 (1993).ADSCrossRefGoogle Scholar
  31. 31.
    K. Asokan, J. C. Jan, K. V. R. Rao, et al., J. Phys.: Condens. Matter 16, 3791 (2004).ADSCrossRefGoogle Scholar
  32. 32.
    J.-H. Guo, A. Gupta, P. Sharma, et al., J. Phys.: Condens. Matter 19, 172202 (2007).ADSCrossRefGoogle Scholar
  33. 33.
    H. Wang and Y.-M. Chiang, J. Am. Ceram. Soc. 81, 89 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • B. B. Straumal
    • 1
    • 2
    • 3
  • S. G. Protasova
    • 1
    • 4
  • A. A. Mazilkin
    • 1
    • 4
  • G. Schütz
    • 4
  • E. Goering
    • 4
  • B. Baretzky
    • 3
  • P. B. Straumal
    • 5
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.National Research Technological University MISiSMoscowRussia
  3. 3.Karlsruher Institut für TechnologieInstitut für NanotechnologieEggenstein-LeopoldshafenGermany
  4. 4.Max-Planck-Institut für MetallforschungStuttgartGermany
  5. 5.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations