JETP Letters

, Volume 97, Issue 5, pp 258–264 | Cite as

Interface-induced states at the boundary between a 3D topological insulator and a normal insulator

  • V. N. Men’shov
  • V. V. Tugushev
  • E. V. Chulkov
Condensed Matter


We show that, when a three-dimensional (3D) narrow-gap semiconductor with inverted band gap (“topological insulator,” TI) is attached to a 3D wide-gap semiconductor with non-inverted band gap (“normal insulator,” NI), two types of bound electron states having different spatial distributions and spin textures arise at the TI/NI interface. Namely, the gapless (“topological”) bound state can be accompanied by the emergence of the gapped (“ordinary”) bound state. We describe these states in the framework of the envelope function method using a variational approach for the energy functional; their existence hinges on the ambivalent character of the constraint for the envelope functions that correspond to the “open” or “natural” boundary conditions at the interface. The properties of the ordinary state strongly depend on the effective interface potential, while the topological state is insensitive to the interface potential variation.


JETP Letter Envelope Function Open Boundary Condition Ordinary State Natural Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Xia, D. Qian, D. Hsieh, et al., Nature Phys. 5, 398 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    D. Hsieh, Y. Xia, D. Qian, et al., Phys. Rev. Lett. 103, 146401 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    K. Kuroda, M. Arita, K. Miyamoto, et al., Phys. Rev. Lett. 105, 076802 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    K. Kuroda, M. Ye, A. Kimura, et al., Phys. Rev. Lett. 105, 146801 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78, 195424 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    I. Garate and M. Franz, Phys. Rev. Lett. 104, 146802 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    R. Yu, W. Zhang, H.-J. Zhang, et al., Science 329, 61 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    T. Fujita, M. B. A. Jalil, and S. G. Tan, Appl. Phys. Express 4, 094201 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    J.-H. Song, H. Jin, and A. J. Freeman, Phys. Rev. Lett. 105, 096403 (2010).Google Scholar
  12. 12.
    M. H. Berntsen, O. Götberg, and O. Tjernberg, arXiv:1206.4183v1, cond-mat (2012).Google Scholar
  13. 13.
    K. Nakayama, K. Eto, Y. Tanaka, et al., arXiv:1206.7043v1, cond-mat (2012).Google Scholar
  14. 14.
    G. S. Jenkins, A. B. Sushkov, D. C. Schmadel, et al., arXiv:1208.3881, cond-mat (2012).Google Scholar
  15. 15.
    A. Kandala, A. Richardella, D. W. Rench, et al., arXiv:1212.1225v1, cond-mat (2012).Google Scholar
  16. 16.
    D. J. BenDaniel and C. B. Duke, Phys. Rev. 152, 683 (1966).ADSCrossRefGoogle Scholar
  17. 17.
    G. Bastard, J. A. Brum, and R. Ferreira, Solid State Phys. 44, 229 (1991).CrossRefGoogle Scholar
  18. 18.
    V. N. Menshov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. 96, 445 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, Keter Publishing House, Jerusalem, 1974; Nauka, Moscow, 1972).Google Scholar
  20. 20.
    I. V. Tokatly, A. G. Tsibizov, and A. A. Gorbatsevich, Phys. Rev. B 65, 165328 (2002).ADSCrossRefGoogle Scholar
  21. 21.
    H. Zhang, C.-X. Liu, X.-L. Qi, et al., Nature Phys. 5, 438 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    C.-X. Liu, X.-L. Qi, H. Zhang, et al., Phys. Rev. B 82, 045122 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    W.-Y. Shan, H.-Z. Lu, and S.-Q. Shen, New J. Phys. 12, 043048 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    I. M. Gelfand and S. V. Fomin, Calculus of Variations (Prentice Hall, Englewood Cliffs, NJ, 1965).zbMATHGoogle Scholar
  25. 25.
    A. Medhi and V. B. Shenoy, arXiv:1202.3863v1, condmat (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. N. Men’shov
    • 1
  • V. V. Tugushev
    • 1
  • E. V. Chulkov
    • 2
    • 3
  1. 1.National Research Centre Kurchatov InstituteMoscowRussia
  2. 2.Tomsk State UniversityTomskRussia
  3. 3.Departamento de Fisica de Materiales, Facultad de Ciencias Quimicas, UPV/EHU and Centro de Fisica de Materiales CFM-MPCCentro Mixto CSIC-UPV/EHUSan Sebastian, Basque CountrySpain

Personalised recommendations