Advertisement

JETP Letters

, Volume 97, Issue 5, pp 249–252 | Cite as

Tunable hybrid surface waves supported by a graphene layer

  • I. V. Iorsh
  • I. V. Shadrivov
  • P. A. Belov
  • Yu. S. Kivshar
Condensed Matter

Abstract

We study electromagnetic waves localized near the surface of a semi-infinite dielectric medium covered by a graphene layer in the presence of a strong external magnetic field. We demonstrate that a novel type of hybrid TE-TM polarized surface plasmons can propagate along the graphene layer. We analyze the effect of the Hall conductivity on the polarization properties of these hybrid surface waves and suggest a possibility to tune the graphene plasmons by the external magnetic field.

Keywords

Surface Wave External Magnetic Field Graphene Sheet JETP Letter Graphene Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. R. Nair, P. Blake, A. N. Grigorenko, et al., Science 320, 1308 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nature Photon. 4, 611 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    Q. Bao and K. P. Loh, ACS Nano 6, 3677 (2012).CrossRefGoogle Scholar
  4. 4.
    Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, Eur. Phys. Lett. 92, 608001 (2010).CrossRefGoogle Scholar
  5. 5.
    F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, Nano Lett. 11, 3370 (2011).CrossRefGoogle Scholar
  6. 6.
    M. Jablan, H. Buljan, and M. Soljacic, Opt. Express 19, 11236 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, Phys. Rev. B 84, 195446 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    B. E. Sernelius, Phys. Rev. B 85, 195427 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    Z. Fei, A. S. Rodin, G. O. Andreev, et al., Nature 487, 82 (2012).ADSGoogle Scholar
  10. 10.
    J. Chen, M. Badioli, P. Alonso-Gonzales, et al., Nature 487, 77 (2012).ADSGoogle Scholar
  11. 11.
    S. A. Mikhailov and K. Ziegler, Phys. Rev. Lett. 99, 016803 (2007).Google Scholar
  12. 12.
    A. Vakil and N. Engheta, Science 332, 1291 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    L. Ju, B. Geng, J. Horng, et al., Nature Nanotechnol. 6, 630 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    S. H. Lee, M. Choi, T. Kim, et al., Nature Mater. 11, 936 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, Nature Photon. 6, 259 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    K. S. Novoselov, Z. Jiang, Y. Zhang, et al., Science 315, 1379 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    A. Ferreira, N. M. R. Peres, and A. H. Castro-Neto, Phys. Rev. B 85, 205426 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, J. Phys.: Cond. Mater. 19, 026222 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    T. Stauber, N. M. R. Peres, and A. K. Geim, Phys. Rev. B 78, 085432 (2008).Google Scholar
  20. 20.
    Z. Q. Li, E. A. Henriksen, Z. Jiang, et al., Nature Phys. 4, 532 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • I. V. Iorsh
    • 1
  • I. V. Shadrivov
    • 2
  • P. A. Belov
    • 1
  • Yu. S. Kivshar
    • 1
    • 2
  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia
  2. 2.Nonlinear Physics Center, Research School of Physics and EngineeringAustralian National UniversityCanberraAustralia

Personalised recommendations