JETP Letters

, Volume 97, Issue 2, pp 92–97 | Cite as

Asymmetry of the time dynamics of breathers in the electroconvection twist structure of a nematic

  • O. A. Skaldin
  • V. A. Delev
  • E. S. Shikhovtseva
Condensed Matter


Dynamics of breather defects in the periodic structures of rolls arising at electroconvection in nematic liquid crystals twisted by π/2 has been studied experimentally and theoretically. The axial components of the velocity of a hydrodynamic flow in the twist structures of nematics are opposite in the neighboring rolls. Dynamics of the breather defect is the periodic creation and annihilation of a pair of classical dislocations with the topological indices “+1” and “-1.” The annihilation occurs faster than the creation. It has been shown that the asymmetric time dynamics of the breather defect is described well by the solution of the perturbed sine-Gordon equation in the form of an interacting soliton and antisoliton.


Soliton Liquid Crystal JETP Letter Nematic Liquid Crystal Sine Gordon Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1994).Google Scholar
  2. 2.
    M. Kleman, Points, Lines and Walls in Liquid Crystals, Magnetic Systems and Various Ordered Media (Wiley, Chichester, 1983).Google Scholar
  3. 3.
    Defects in Liquid Crystals: Computer Simulations, Theory and Experiments, Ed. by O. D. Lavrentovich, P. Pasini, S. Zannoni, and S. Zumer (Kluwer, Dordrecht, 2001).Google Scholar
  4. 4.
    M. V. Kurik and O. D. Lavrentovich, Sov. Phys. Usp. 31, 196 (1988).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    P. V. Dolganov, V. M. Zhilin, V. K. Dolganov, and E. I. Kats, JETP Lett. 89, 161 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    O. A. Skaldin and Yu. I. Timirov, JETP Lett. 90, 633 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    S. A. Pikin, Structural Transformations in Liquid Crystals (Nauka, Moscow, 1981) [in Russian].Google Scholar
  8. 8.
    Pattern Formation in Liquid Crystals, Ed. by A. Buka and L. Kramer (Springer-Verlag, New York, 1996).Google Scholar
  9. 9.
    A. Weber, E. Bodenschatz, and L. Kramer, Adv. Mater. 3, 191 (1991).CrossRefGoogle Scholar
  10. 10.
    S. Nasuno, O. Sasaki, and S. Kai, Phys. Rev. A. 46, 4954 (1992).ADSCrossRefGoogle Scholar
  11. 11.
    Noriko Oikawa, Yoshiki Hidaka, and Shoichi Kai, Phys. Rev. E 70, 066204–1 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    H. Yamazaki, S. Kai, and K. Hirakawa, J. Phys. Soc. Jpn. 56, 1 (1987).ADSCrossRefGoogle Scholar
  13. 13.
    S. Kai, N. Chizumi, and M. Kohno, J. Phys. Soc. Jpn. 58, 3541 (1989).ADSCrossRefGoogle Scholar
  14. 14.
    S. Nasuno, S. Takeuchi, and Y. Sawada, Phys. Rev. A 40, 3457 (1989).ADSCrossRefGoogle Scholar
  15. 15.
    S. Rasenat, V. Steinberg, and I. Rehberg, Phys. Rev. A 42, 5998 (1990).ADSCrossRefGoogle Scholar
  16. 16.
    V. A. Delev, P. Toth, and A. P. Krekhov, Mol. Cryst. Liq. Cryst. 351, 179 (2000).CrossRefGoogle Scholar
  17. 17.
    S. Tatsumi, M. Sano, and A. G. Rossberg, Phys. Rev. E 73, 011704–1 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    E. Bodenschatz, W. Pesch, and L. Kramer, Physica D 32, 135 (1988).ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    L. Kramer, E. Bodenschatz, W. Pesch, et al., Liq. Cryst. 5, 699 (1989).CrossRefGoogle Scholar
  20. 20.
    L. Kramer, E. Bodenschatz, and W. Pesch, Phys. Rev. Lett. 64, 2588 (1990).ADSCrossRefGoogle Scholar
  21. 21.
    E. Bodenschatz, W. Pesch, and L. Kramer, J. Stat. Phys. 64, 1007 (1991).ADSCrossRefGoogle Scholar
  22. 22.
    P. Bak, Rep. Prog. Phys. 45, 587 (1982).MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    T. A. Kontorova and Ya. I. Frenkel’, Zh. Eksp. Teor. Fiz. 8, 1340 (1938).zbMATHGoogle Scholar
  24. 24.
    F. C. Frank and J. H. van der Merwe, Proc. R. Soc. London A 198, 205 (1949).ADSzbMATHCrossRefGoogle Scholar
  25. 25.
    M. Lowe and J. P. Gollub, Phys. Rev. A 31, 3893 (1985).ADSCrossRefGoogle Scholar
  26. 26.
    O. A. Skaldin, V. A. Delev, E. S. Shikhovtseva, et al., JETP Lett. 93, 388 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    E. S. Shikhovtseva, Physica A 303, 133 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    A. N. Chuvyrov, O. A. Skaldin, V. A. Delev, et al., J. Exp. Theor. Phys. 103, 926 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    L. M. Blinov, Electro- and Magnetooptics of Liquid Crystals (Nauka, Moscow, 1978) [in Russian].Google Scholar
  30. 30.
    R. H. Kraichnan, J. Fluid Mech. 67, 155 (1975).ADSzbMATHCrossRefGoogle Scholar
  31. 31.
    A. Hertrich, A. P. Krekhov, and O. A. Scaldin, J. Phys. II France 4, 239 (1994).CrossRefGoogle Scholar
  32. 32.
    E. S. Shikhovtsova and O. A. Ponomarev, JETP Lett. 64, 427 (1996).Google Scholar
  33. 33.
    E. S. Shikhovtseva, Phys. Low-Dim. Struct. 11–12, 77 (1999).Google Scholar
  34. 34.
    D. W. McLauglin and A. C. Scott, Phys. Rev. A 18, 1652 (1978).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • O. A. Skaldin
    • 1
  • V. A. Delev
    • 1
  • E. S. Shikhovtseva
    • 1
  1. 1.Institute of Physics of Molecules and Crystals, Ufa Scientific CenterRussian Academy of SciencesUfaRussia

Personalised recommendations