Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Asymmetry of the time dynamics of breathers in the electroconvection twist structure of a nematic

  • 66 Accesses

  • 7 Citations

Abstract

Dynamics of breather defects in the periodic structures of rolls arising at electroconvection in nematic liquid crystals twisted by π/2 has been studied experimentally and theoretically. The axial components of the velocity of a hydrodynamic flow in the twist structures of nematics are opposite in the neighboring rolls. Dynamics of the breather defect is the periodic creation and annihilation of a pair of classical dislocations with the topological indices “+1” and “-1.” The annihilation occurs faster than the creation. It has been shown that the asymmetric time dynamics of the breather defect is described well by the solution of the perturbed sine-Gordon equation in the form of an interacting soliton and antisoliton.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1994).

  2. 2.

    M. Kleman, Points, Lines and Walls in Liquid Crystals, Magnetic Systems and Various Ordered Media (Wiley, Chichester, 1983).

  3. 3.

    Defects in Liquid Crystals: Computer Simulations, Theory and Experiments, Ed. by O. D. Lavrentovich, P. Pasini, S. Zannoni, and S. Zumer (Kluwer, Dordrecht, 2001).

  4. 4.

    M. V. Kurik and O. D. Lavrentovich, Sov. Phys. Usp. 31, 196 (1988).

  5. 5.

    P. V. Dolganov, V. M. Zhilin, V. K. Dolganov, and E. I. Kats, JETP Lett. 89, 161 (2009).

  6. 6.

    O. A. Skaldin and Yu. I. Timirov, JETP Lett. 90, 633 (2009).

  7. 7.

    S. A. Pikin, Structural Transformations in Liquid Crystals (Nauka, Moscow, 1981) [in Russian].

  8. 8.

    Pattern Formation in Liquid Crystals, Ed. by A. Buka and L. Kramer (Springer-Verlag, New York, 1996).

  9. 9.

    A. Weber, E. Bodenschatz, and L. Kramer, Adv. Mater. 3, 191 (1991).

  10. 10.

    S. Nasuno, O. Sasaki, and S. Kai, Phys. Rev. A. 46, 4954 (1992).

  11. 11.

    Noriko Oikawa, Yoshiki Hidaka, and Shoichi Kai, Phys. Rev. E 70, 066204–1 (2004).

  12. 12.

    H. Yamazaki, S. Kai, and K. Hirakawa, J. Phys. Soc. Jpn. 56, 1 (1987).

  13. 13.

    S. Kai, N. Chizumi, and M. Kohno, J. Phys. Soc. Jpn. 58, 3541 (1989).

  14. 14.

    S. Nasuno, S. Takeuchi, and Y. Sawada, Phys. Rev. A 40, 3457 (1989).

  15. 15.

    S. Rasenat, V. Steinberg, and I. Rehberg, Phys. Rev. A 42, 5998 (1990).

  16. 16.

    V. A. Delev, P. Toth, and A. P. Krekhov, Mol. Cryst. Liq. Cryst. 351, 179 (2000).

  17. 17.

    S. Tatsumi, M. Sano, and A. G. Rossberg, Phys. Rev. E 73, 011704–1 (2006).

  18. 18.

    E. Bodenschatz, W. Pesch, and L. Kramer, Physica D 32, 135 (1988).

  19. 19.

    L. Kramer, E. Bodenschatz, W. Pesch, et al., Liq. Cryst. 5, 699 (1989).

  20. 20.

    L. Kramer, E. Bodenschatz, and W. Pesch, Phys. Rev. Lett. 64, 2588 (1990).

  21. 21.

    E. Bodenschatz, W. Pesch, and L. Kramer, J. Stat. Phys. 64, 1007 (1991).

  22. 22.

    P. Bak, Rep. Prog. Phys. 45, 587 (1982).

  23. 23.

    T. A. Kontorova and Ya. I. Frenkel’, Zh. Eksp. Teor. Fiz. 8, 1340 (1938).

  24. 24.

    F. C. Frank and J. H. van der Merwe, Proc. R. Soc. London A 198, 205 (1949).

  25. 25.

    M. Lowe and J. P. Gollub, Phys. Rev. A 31, 3893 (1985).

  26. 26.

    O. A. Skaldin, V. A. Delev, E. S. Shikhovtseva, et al., JETP Lett. 93, 388 (2011).

  27. 27.

    E. S. Shikhovtseva, Physica A 303, 133 (2002).

  28. 28.

    A. N. Chuvyrov, O. A. Skaldin, V. A. Delev, et al., J. Exp. Theor. Phys. 103, 926 (2006).

  29. 29.

    L. M. Blinov, Electro- and Magnetooptics of Liquid Crystals (Nauka, Moscow, 1978) [in Russian].

  30. 30.

    R. H. Kraichnan, J. Fluid Mech. 67, 155 (1975).

  31. 31.

    A. Hertrich, A. P. Krekhov, and O. A. Scaldin, J. Phys. II France 4, 239 (1994).

  32. 32.

    E. S. Shikhovtsova and O. A. Ponomarev, JETP Lett. 64, 427 (1996).

  33. 33.

    E. S. Shikhovtseva, Phys. Low-Dim. Struct. 11–12, 77 (1999).

  34. 34.

    D. W. McLauglin and A. C. Scott, Phys. Rev. A 18, 1652 (1978).

Download references

Author information

Correspondence to O. A. Skaldin.

Additional information

Original Russian Text © O.A. Skaldin, V.A. Delev, E.S. Shikhovtseva, 2013, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 97, No. 2, pp. 98–103.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Skaldin, O.A., Delev, V.A. & Shikhovtseva, E.S. Asymmetry of the time dynamics of breathers in the electroconvection twist structure of a nematic. Jetp Lett. 97, 92–97 (2013). https://doi.org/10.1134/S0021364013020112

Download citation

Keywords

  • Soliton
  • Liquid Crystal
  • JETP Letter
  • Nematic Liquid Crystal
  • Sine Gordon Equation