Advertisement

JETP Letters

, Volume 97, Issue 1, pp 20–27 | Cite as

Thermal conductivity and the electron-ion heat transfer coefficient in condensed media with a strongly excited electron subsystem

Article

Abstract

The two-temperature (T e > T i ) thermal conductivity coefficient κ2T and electron-ion heat transfer coefficient α, which are necessary for the quantitative description of the processes initiated by ultrashort laser pulse, have been calculated using a kinetic equation, the matrix element for the scattering probability, and a screened Coulomb potential describing the interaction between charged particles. Quantitative information has been obtained for coefficients κ2T and α values for noble and transition metals, where the d-band electrons play a significant role.

Keywords

JETP Letter Ultrashort Laser Pulse Ablation Threshold Thermal Conductivity Coefficient Electron Subsystem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, Sov. Phys. JETP 39, 375 (1974).ADSGoogle Scholar
  2. 2.
    Yu. V. Petrov, Laser Part. Beams 23, 283 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    Zh. Lin, L. V. Zhigilei, and V. Celli, Phys. Rev. B 77, 075133 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, Phys. Rev. B 65, 214303 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, et al., Appl. Surf. Sci. 255, 9712 (2009); arXiv:0812.2965.ADSCrossRefGoogle Scholar
  6. 6.
    S. G. Bezhanov, A. P. Kanavin, and S. A. Uryupin, Quantum Electron. 41, 447 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    P. A. Loboda, N. A. Smirnov, A. A. Shadrin, et al., High Energy Density Phys. 7, 361 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    V. V. Zhakhovskii, K. Nishikhara, S. I. Anisimov, and N. A. Inogamov, JETP Lett. 71, 167 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    L. V. Zhigilei, Zh. Lin, D. S. Ivanov, et al., J. Phys. Chem. C 113, 11892 (2009).CrossRefGoogle Scholar
  10. 10.
    S. I. Anisimov, V. V. Zhakhovskii, N. A. Inogamov, et al., JETP Lett. 77, 606 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    A. Volkov and L. Zhigilei, J. Phys.: Conf. Ser. 59, 640 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    B. Y. Mueller, I. Klett, and B. Rethfeld, AIP Conf. Proc. 1464, 609 (2012); doi: 10.1063/1.4739913.ADSCrossRefGoogle Scholar
  13. 13.
    N. Inogamov and Yu. Petrov, J. Exp. Theor. Phys. 110, 446 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    X. Y. Wang, D. M. Riffe, Y.-S. Lee, et al., Phys. Rev. B 50, 8016 (1994).ADSCrossRefGoogle Scholar
  15. 15.
  16. 16.
  17. 17.
  18. 18.
    M. Gill-Comeau and L. Lewis, Phys. Rev. B 84, 224110 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    V. Zhakhovskii, N. A. Inogamov, Yu. V. Petrov, et al., Appl. Surf. Sci. 255, 9592 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    S. I. Anisimov, N. A. Inogamov, Yu. V. Petrov, et al., Appl. Phys. A 92, 797 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    S. I. Anisimov, N. A. Inogamov, Yu. V. Petrov, et al., Appl. Phys. A 92, 939 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    M. E. Povarnitsyn, N. E. Andreev, E. M. Apfelbaum, et al., Appl. Surf. Sci. (2011). doi:10.1016/j.apsusc.2011.07.017.Google Scholar
  23. 23.
    G. Pottlacher, High Temperature Thermophysical Properties of 22 Pure Metals (Keiper, 2010).Google Scholar
  24. 24.
    J. Ziman, Principles of the Theory of Solids (Cambridge Univ., Cambridge, 1976; Mir, Moscow, 1974).Google Scholar
  25. 25.
    W. A. Harrison, Solid State Theory (McGraw-Hill, New York, 1970; Mir, Moscow, 1970).Google Scholar
  26. 26.
    Z. Chen, V. Sametoglu, Y. Y. Tsui, et al., Phys. Rev. Lett. 108, 165001 (2012).ADSCrossRefGoogle Scholar
  27. 27.
    M. I. Kaganov, I. M. Lifshits, and L. V. Tanatarov, Sov. Phys. JETP 4, 173 (1956).Google Scholar
  28. 28.
    P. B. Allen, Phys. Rev. Lett. 59, 1460 (1987).ADSCrossRefGoogle Scholar
  29. 29.
    S. D. Brorson, A. Kazeroonian, J. S. Moodera, et al., Phys. Rev. Lett. 64, 2172 (1990).ADSCrossRefGoogle Scholar
  30. 30.
    W. Ma, H. Wang, X. Zhang, and Wei Wang, Int. J. Thermophys. doi 10.1007/s10765-011-1063-2.Google Scholar
  31. 31.
    J. L. Hostetler, A. N. Smith, D. M. Czajkowsky, and P. M. Norris, Appl. Opt. 38, 3614 (1999).ADSCrossRefGoogle Scholar
  32. 32.
    W. G. Ma et al., J. Appl. Phys. 108, 064308 (2010).ADSCrossRefGoogle Scholar
  33. 33.
    N. F. Mott, Proc. Phys. Soc. 47, 571 (1935).ADSCrossRefGoogle Scholar
  34. 34.

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • Yu. V. Petrov
    • 1
  • N. A. Inogamov
    • 1
  • K. P. Migdal
    • 2
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.All-Russia Research Institute of AutomaticsMoscowRussia

Personalised recommendations