Advertisement

JETP Letters

, Volume 96, Issue 9, pp 572–576 | Cite as

Diffusion of vibrations in disordered systems

  • Y. M. Beltukov
  • V. I. Kozub
  • D. A. Parshin
Condensed Matter

Abstract

We consider diffusion of vibrations in random lattices with translational invariance. Above the frequency ωIR corresponding to the Ioffe-Regel crossover (and depending on the strength of disorder), phonons cannot propagate through the lattice and transfer energy. At the same time, most of the vibrations in this range are not localized. We show that these delocalized excitations are similar to diffusons introduced by P. B. Allen, J. L. Feldman, J. Fabian, and F. Wooten (see, e.g., Phil. Mag. B 79, 1715 (1999)) to describe heat transport in glasses. In this range the energy in the lattice is transferred by means of diffusion of vibrational excitations. We have calculated the diffusivity of the modes D(ω) using both the direct numerical solution of Newton equations and the Edwards-Thouless formula. It is nearly constant above ωIR and goes to zero at the localization threshold.

Keywords

JETP Letter Vibrational Excitation Vibrational Property Dynamical Matrix Participation Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Hunklinger and A. K. Raychaudhuri, in Progress in Low Temperature Physics, Ed. by D. F. Brewer (Elsevier, Amsterdam, 1986), Vol. 9, p. 267.Google Scholar
  2. 2.
    W. A. Phillips, Rep. Prog. Phys. 50, 1657 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    R. C. Zeller and R. O. Pohl, Phys. Rev. B 4, 2029 (1971).ADSCrossRefGoogle Scholar
  4. 4.
    U. Buchenau, Yu. M. Galperin, V. L. Gurevich, et al., Phys. Rev. B 46, 2798 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    D. A. Parshin, Sov. Phys. Solid State 36, 991 (1994).ADSGoogle Scholar
  6. 6.
    D. G. Cahill and R. O. Pohl, Phys. Rev. B 35, 4067 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    J. E. Graebner, B. Golding, and L. C. Allen, Phys. Rev. B 34, 5696 (1986).ADSCrossRefGoogle Scholar
  8. 8.
    A. F. Ioffe and A. R. Regel, Prog. Semicond. 4, 237 (1960).Google Scholar
  9. 9.
    V. L. Gurevich, D. A. Parshin, J. Pelous, and H. R. Schober, Phys. Rev. B 48, 16318 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    S. N. Taraskin and S. R. Elliott, Phys. Rev. B 61, 12031 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    H. R. Schober, J. Phys.: Condens. Matter 16, S2659 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    W. Schirmacher, G. Diezemann, and C. Ganter, Phys. Rev. Lett. 81, 136 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    S. N. Taraskin and S. R. Elliott, J. Phys.: Condens. Matter 14, 3143 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    W. Jin, P. Vashishta, R. K. Kalia, and J. P. Rino, Phys. Rev. B 48, 9359 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    C. Oligschleger, Phys. Rev. B 60, 3182 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    S. N. Taraskin and S. R. Elliott, Phys. Rev. B 56, 8605 (1997).ADSCrossRefGoogle Scholar
  17. 17.
    D. G. Cahill and R. O. Pohl, Solid State Commun. 70, 927 (1989).ADSCrossRefGoogle Scholar
  18. 18.
    D. G. Cahill, S. K. Watson, and R. O. Pohl, Phys. Rev. B 46, 6131 (1992).ADSCrossRefGoogle Scholar
  19. 19.
    A. Einstein, Ann. Phys. 35, 679 (1911).MATHGoogle Scholar
  20. 20.
    P. B. Allen and J. L. Feldman, Phys. Rev. B 48, 12581 (1993).ADSCrossRefGoogle Scholar
  21. 21.
    J. L. Feldman, M. D. Kluge, P. B. Allen, and F. Wooten, Phys. Rev. B 48, 12589 (1993).ADSCrossRefGoogle Scholar
  22. 22.
    P. B. Allen, J. L. Feldman, J. Fabian, and F. Wooten, Philos. Mag. B 79, 1715 (1999).ADSCrossRefGoogle Scholar
  23. 23.
    Y. M. Beltukov and D. A. Parshin, Phys. Solid State 53, 151 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    Y. M. Beltukov and D. A. Parshin, JETP Lett. 93, 598 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    R. N. Silver and H. Röder, Phys. Rev. E 56, 4822 (1997).ADSCrossRefGoogle Scholar
  26. 26.
    To be published.Google Scholar
  27. 27.
    A. Tanguy, B. Mantisi, and M. Tsamados, Europhys. Lett. 90, 16004 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    J. T. Edwards and D. J. Thouless, J. Phys. C 5, 807 (1972).ADSCrossRefGoogle Scholar
  29. 29.
    N. Xu, V. Vitelli, M. Wyart, et al., Phys. Rev. Lett. 102, 038001 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    N. Xu, V. Vitelli, M. Wyart, et al., Phys. Rev. E 81, 021301 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations