JETP Letters

, Volume 96, Issue 6, pp 397–404

Nature of the quantum critical point as disclosed by extraordinary behavior of magnetotransport and the lorentz number in the heavy-fermion metal YbRh2Si2

  • V. R. Shaginyan
  • A. Z. Msezane
  • K. G. Popov
  • J. W. Clark
  • M. V. Zverev
  • V. A. Khodel
Article

Abstract

Physicists are engaged in vigorous debate on the nature of the quantum critical points (QCP) governing the low-temperature properties of heavy-fermion metals. Recent experimental observations of the much-studied compound YbRh2Si2 in the regime of vanishing temperature incisively probe the nature of its magnetic-field-tuned QCP. The jumps revealed both in the residual resistivity ρ0 and the Hall resistivity RH, along with violation of the Wiedemann-Franz law, provide vital clues to the origin of such non-Fermi-liquid behavior. The empirical facts point unambiguously to association of the observed QCP with a fermion-condensation phase transition. Based on this insight, the resistivities ρ0 and RH are predicted to show jumps at the crossing of the QCP produced by application of a magnetic field, with attendant violation of the Wiedemann-Franz law. It is further demonstrated that experimentally identifiable multiple energy scales are related to the scaling behavior of the effective mass of the quasiparticles responsible for the low-temperature properties of such heavy-fermion metals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. R. Stewart, Rev. Mod. Phys. 73, 797 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    P. Gegenwart, Q. Si, and F. Steglich, Nature Phys. 4, 186 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    S. Sachdev, Nature Phys. 4, 173 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    P. Coleman and A. J. Schofield, Nature 433, 226 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    K. Kadowaki and S. B. Woods, Solid State Commun. 58, 507 (1986).ADSCrossRefGoogle Scholar
  7. 7.
    V. R. Shaginyan, M. Ya. Amusia, A. Z. Msezane, and K. G. Popov, Phys. Rep. 492, 31 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    V. R. Shaginyan, Phys. At. Nucl. 74, 1107 (2011).CrossRefGoogle Scholar
  9. 9.
    V. A. Khodel, J. W. Clark, and M. V. Zverev, Phys. At. Nucl. 74, 1230 (2011).CrossRefGoogle Scholar
  10. 10.
    P. Coleman, C. Pepin, Q. Si, and R. Ramazashvili, J. Phys.: Condens. Matter 13, R723 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    P. Coleman and C. Pepin, Physica B 312–313, 383 (2002).CrossRefGoogle Scholar
  12. 12.
    V. A. Khodel, JETP Lett. 86, 721 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    J. W. Clark, V. A. Khodel, and M. V. Zverev, Int. J. Mod. Phys. B 24, 4901 (2010).ADSMATHCrossRefGoogle Scholar
  14. 14.
    V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990).ADSGoogle Scholar
  15. 15.
    G. E. Volovik, Lect. Notes Phys. 718, 31 (2007).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    P. Gegenwart et al., Science 315, 969 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    S. Friedemann et al., Proc. Natl. Acad. Sci. USA 107, 14547 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    S. Friedemann et al., J. Phys.: Condens. Matter 23, 094216 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    H. Pfau et al., Nature 484, 493 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    P. Schlottmann, Z. Phys. B: Condens. Matter 51, 223 (1983).ADSCrossRefGoogle Scholar
  21. 21.
    D. Pines and P. Noziéres, Theory of Quantum Liquids (Benjamin, New York, 1966).Google Scholar
  22. 22.
    P. Noziéres, J. Phys. I France 2, 443 (1992).CrossRefGoogle Scholar
  23. 23.
    J. W. Clark, V. A. Khodel, and M. V. Zverev, Phys. Rev. B 71, 012401 (2005).ADSCrossRefGoogle Scholar
  24. 24.
    P. Gegenwart et al., Phys. Rev. Lett. 89, 056402 (2002).ADSCrossRefGoogle Scholar
  25. 25.
    V. R. Shaginyan, JETP Lett. 79, 286 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    D. Takahashi et al., Phys. Rev. B 67, 180407 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    J. Custers et al., Nature 424, 524 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    V. A. Khodel and M. V. Zverev, JETP Lett. 85, 404 (2007).ADSCrossRefGoogle Scholar
  29. 29.
    S. Ernst et al., Nature 474, 363 (2011).MathSciNetCrossRefGoogle Scholar
  30. 30.
    V. R. Shaginyan, A. Z. Msezane, K. G. Popov, et al., Phys. Rev. B 86, 085147 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    P. Aynajian et al., Nature 486, 201 (2012).ADSCrossRefGoogle Scholar
  32. 32.
    S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).ADSCrossRefGoogle Scholar
  33. 33.
    J. Paglione et al., Pys. Rev. Lett. 91, 246405 (2003).ADSCrossRefGoogle Scholar
  34. 34.
    V. R. Shaginyan, JETP Lett. 81, 222 (2005).ADSCrossRefGoogle Scholar
  35. 35.
    V. R. Shaginyan and K. G. Popov, Phys. Lett. A 361, 406 (2007).ADSCrossRefGoogle Scholar
  36. 36.
    W. K. Park and L. H. Greene, J. Phys.: Condens. Matter 21, 103203 (2009).ADSCrossRefGoogle Scholar
  37. 37.
    M. R. Norman, Q. Si, Ya. B. Bazaliy, and R. Ramazashvili, Phys. Rev. Lett. 90, 116601 (2002).ADSCrossRefGoogle Scholar
  38. 38.
    V. A. Khodel, M. V. Zverev, and J. W. Clark, JETP Lett. 81, 315 (2005).ADSCrossRefGoogle Scholar
  39. 39.
    S. Paschen et al., Nature 432, 881 (2004).ADSCrossRefGoogle Scholar
  40. 40.
    V. R. Shaginyan, P. G. Popov, and S. A. Artamonov, JETP Lett. 82, 215 (2005).ADSCrossRefGoogle Scholar
  41. 41.
    V. A. Khodel, V. M. Yakovenko, and M. V. Zverev, JETP Lett. 86, 772 (2007).ADSCrossRefGoogle Scholar
  42. 42.
    E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon, Oxford, 1981).Google Scholar
  43. 43.
    N. W. Ashkroft and N. D. Mermin, Solid State Physics (HRW, Philadelphia, 1976).Google Scholar
  44. 44.
    N. Oeschler et al., Physica B 403, 1254 (2008).ADSCrossRefGoogle Scholar
  45. 45.
    V. R. Shaginyan et al., Phys. Lett. A 373, 986 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. R. Shaginyan
    • 1
    • 2
  • A. Z. Msezane
    • 2
  • K. G. Popov
    • 3
  • J. W. Clark
    • 4
  • M. V. Zverev
    • 5
    • 6
  • V. A. Khodel
    • 4
    • 5
  1. 1.Petersburg Nuclear Physics InstituteGatchinaRussia
  2. 2.Clark Atlanta UniversityAtlantaUSA
  3. 3.Komi Science Center, Ural DivisionRussian Academy of SciencesSyktyvkarRussia
  4. 4.McDonnell Center for the Space Sciences and Department of PhysicsWashington UniversitySt. LouisUSA
  5. 5.National Research Centre Kurchatov InstituteMoscowRussia
  6. 6.Moscow Institute of Physics and TechnologyMoscowRussia

Personalised recommendations