JETP Letters

, Volume 96, Issue 6, pp 385–390 | Cite as

Pseudogap phase in cuprates: Oxygen orbital moments instead of circulating currents

Article

Abstract

Circulating current loops within the cuprate unit cell are proposed to play a key role in the physics of the pseudogap phase. However, main experimental observations motivated by this sophisticated proposal and seemingly supporting the circulating current model can be explained within a simple and physically clear microscopic model. It has been argued that, instead of a well-isolated Zhang-Rice (ZR) singlet 1 A 1g , the ground state of the hole center [CuO4]5− (cluster analog of Cu3+ ion) in cuprates should be described by a complex 1 A 1g -1,3 B 2g -1,3 E u multiplet, formed by a competition of conventional hybrid Cu 3d-O 2p \(b_{1g} (\sigma ) \propto d_{x^2 - y^2 }\) state and purely oxygen nonbonding O 2 states with a 2g (π) and e ux, y (π) symmetry. In contrast to inactive ZR singlet we arrive at several novel competing orbital and spin-orbital order parameters, e.g., Ising-like net orbital magnetic moment, orbital toroidal moment, intra-plaquette’s staggered order of Ising-like oxygen orbital magnetic moments. As a most impressive validation of the non-ZR model we explain fascinating results of recent neutron scattering measurements that revealed novel type of magnetic ordering in pseudogap phase of several hole-doped cuprates.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. M. Rice, K.-Y. Yang, and F. C. Zhang, Rep. Prog. Phys. 75, 016502 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    C. M. Varma, Phys. Rev. B 55, 14554 (1997); Nature 468, 184 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    R. Thomale and M. Greiter, Phys. Rev. B 77, 094511 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    C. Weber, A. Laeuchli, F. Mila, and T. Giamarchi, Phys. Rev. Lett. 102, 017005 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    A. Kaminski, S. Rosenkranz, H. M. Fretwell, et al., Nature (London) 416, 610 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    P. Bourges and Y. Sidis, Compt. Rend. Phys. 12, 461 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    J. Xia, E. Schemm, G. Deutscher, et al., Phys. Rev. Lett. 100, 127002 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    S. De Almeida-Didry, Y. Sidis, V. Balédent, et al., Phys. Rev. B 86, 020504 (2012).CrossRefGoogle Scholar
  9. 9.
    R.-H. He, M. Hashimoto, H. Karapetyan, et al., Science 231, 1579 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    N. P. Armitage and J. P. Hu, Philos. Mag. Lett. 84, 105 (2004); S. V. Borisenko, A. A. Kordyuk, A. Koitzsch, et al., Nature 431, 7004 (2004); M. Lindroos, V. Arpiainen, and A. Bansil, Phys. Rev. Lett. 105, 189702 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    I. Tomeno, T. Machi, K. Tai, et al., Phys. Rev. B 49, 15327 (1994); P. M. Singer, T. Imai, F. C. Chou, et al., Phys. Rev. B 72, 014537 (2005); B. Chen, S. Mukhopadhyay, W. P. Halperin, et al., Phys. Rev. B 77, 052508 (2008); J. Crocker, A. P. Dioguardi, N. Roberts-Warren, et al., Phys. Rev. B 84, 224502 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    S. Strässle, J. Roos, M. Mali, et al., Phys. Rev. Lett. 101, 237001 (2008); S. Strässle, B. Graneli, M. Mali, et al., Phys. Rev. Lett. 106, 097003 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    G. J. MacDougall, A. A. Aczel, J. P. Carlo, et al., Phys. Rev. Lett. 101, 017001 (2008); J. E.Sonier, V. Pacradouni, S. A. Sabok-Sayr, et al., Phys. Rev. Lett. 103, 167002 (2009); W. Huang, V. Pacradouni, M. P. Kennett, et al., Phys. Rev. B 85, 104527 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).ADSCrossRefGoogle Scholar
  15. 15.
    H. Eskes, L. H. Tjeng, and G. A. Sawatzky, Phys. Rev. B 41, 288 (1990); H. Kamimura and Y. Suwa, J. Phys. Soc. Jpn. 62, 3368 (1993).ADSCrossRefGoogle Scholar
  16. 16.
    A. S. Moskvin, JETP Lett. 80, 697 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    A. S. Moskvin and Yu. D. Panov, Low Temp. Phys. 37, 261 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    G. M. de Luca, G. Ghiringhelli, M. Moretti Sala, et al., Phys. Rev. B 82, 214504 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    Z. Viskadourakis, I. Radulov, A. P. Petrović, et al., Phys. Rev. B 85, 214502 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    G. T. Trammell, Phys. Rev. 92, 1387 (1953).ADSMATHCrossRefGoogle Scholar
  21. 21.
    S.-H. Lee, S. K. Sinha, C. Stassis, et al., Phys. Rev. B 60, 10405 (1999).ADSCrossRefGoogle Scholar
  22. 22.
    A. S. Moskvin, Low Temp. Phys. 33, 234 (2007); Phys. Rev. B 84, 075116 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    C. Panagopoulos, M. Majoros, T. Nishizaki, and H. Iwasaki, Phys. Rev. Lett. 96, 047002 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    A. S. Moskvin and Yu. D. Panov, JETP 84, 354 (1997); Phys. Status Solidi B 212, 141 (1999); J. Phys. Chem. Solids 60, 607 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsUral Federal UniversityYekaterinburgRussia

Personalised recommendations