JETP Letters

, Volume 96, Issue 6, pp 375–379

Ultrafast electron dynamics on the silicon surface excited by an intense femtosecond laser pulse

  • A. A. Ionin
  • S. I. Kudryashov
  • S. V. Makarov
  • P. N. Saltuganov
  • L. V. Seleznev
  • D. V. Sinitsyn
  • A. R. Sharipov
Article

Abstract

The electron dynamics on the silicon surface during the pump ultrashort infrared laser pulse is studied by time-resolved optical microscopy and electron-emission measurements. It is found that the optical response of the material under the conditions where a dense electron-hole plasma is formed is determined by the renormalization of the band spectrum of the material rather than by intraband transitions of photoexcited carriers. Nonlinear Auger recombination in the plasma enhanced by the plasma-induced renormalization of the band gap and accompanied by the generation of hot charge carriers stimulates intense prompt emission of such carriers from the surface of the photoexcited material, whose work function decreases owing to the large plasma-induced renormalization of the energies of higher conduction bands.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Seibert, G. C. Cho, W. Kutt, et al., Phys. Rev. B 42, 2842 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    K. Sokolowski-Tinten and D. von der Linde, Phys. Rev. B 61, 2643 (2000); T. Y. Choi and C. P. Grigoropoulos, J. Appl. Phys. 92, 4918 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    E. J. Yoffa, Phys. Rev. B 21, 2415 (1980).ADSCrossRefGoogle Scholar
  4. 4.
    A. Oschlies, R. W. Godby, and R. J. Needs, Phys. Rev. B 45, 13741 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    C. D. Spataru, L. X. Benedict, and S. G. Louie, Phys. Rev. B 69, 205204 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    T. Ichibayashi, S. Tanaka, J. Kanasaki, and K. Tanimura, Phys. Rev. B 84, 235210 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    S. I. Kudryashov, M. Kandyla, C. A. D. Roeser, and E. Mazur, Phys. Rev. B 75, 085207 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    M. Hase, M. Katsuragawa, A. M. Constantinescu, and H. Petek, Nature Photon. 6, 243 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    E. N. Glezer, Y. Siegal, L. Huang, and E. Mazur, Phys. Rev. B 51, 6959 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    S. I. Kudryashov, Proc. SPIE 5448, 1171 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    T. Apostolova, A. A. Ionin, S. I. Kudryashov, et al., Opt. Eng. 51, 121808 (2012).CrossRefGoogle Scholar
  12. 12.
    J. M. Liu, R. Yen, H. Kurz, and N. Bloembergen, Appl. Phys. Lett. 39, 755 (1981).ADSCrossRefGoogle Scholar
  13. 13.
    C. T. Hebeisen, G. Sciaini, M. Harb, et al., Phys. Rev. B 78, 081403R (2008); H. Park and J. M. Zuo, Appl. Phys. Lett. 94, 251103 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    N. M. Bulgakova, R. Stoian, A. Rosenfeld, et al., Phys. Rev. B 69, 054102 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    C. V. Shank, R. Yen, and C. Hirlimann, Phys. Rev. Lett. 50, 454 (1983).ADSCrossRefGoogle Scholar
  16. 16.
    D. Hulin, M. Combescot, J. Bok, et al., Phys. Rev. Lett. 52, 1998 (1984).ADSCrossRefGoogle Scholar
  17. 17.
    S. I. Ashitkov, A. V. Ovchinnikov, and M. B. Agranat, JETP Lett. 79, 529 (2004); M. B. Agranat, S. I. Ashitkov, S. I. Anisimov, et al., Appl. Phys. A 94, 879 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, Orlando, 1998).Google Scholar
  20. 20.
    L. Bruschi, M. Santini, and G. Torzo, J. Phys. B: At. Mol. Phys. 17, 1137 (1984).ADSCrossRefGoogle Scholar
  21. 21.
    W. Wendelen, D. Autrique, and A. Bogaerts, Appl. Phys. Lett. 96, 051121 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    S. I. Kudryashov and V. I. Emel’yanov, JETP Lett. 73, 228 (2001); S. I. Kudryashov and V. I. Emel’yanov, J. Exp. Theor. Phys. 94, 94 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    A. Dargys and J. Kundrotas, Handbook on Physical Properties of Ge, Si, GaAs and InP (Science and Encyclopedia Publ., Vilnius, 1994).Google Scholar
  24. 24.
    A. J. Sabbah and D. M. Riffe, Phys. Rev. B 66, 165217 (2002).ADSCrossRefGoogle Scholar
  25. 25.
    P. Yu and M. Cardona, Fundamentals of Semiconductor Physics (Springer, New York, 1996; Fizmatlit, Moscow, 2002).Google Scholar
  26. 26.
    J.-Y. Bigot, M. T. Portella, R. W. Schoenlein, et al., Phys. Rev. Lett. 67, 636 (1991).ADSCrossRefGoogle Scholar
  27. 27.
    D. H. Reitze, T. R. Zhang, Wm. M. Wood, and M. C. Downer, J. Opt. Soc. Am. B 7, 84 (1990); J. Bonse, Appl. Phys. A 84, 63 (2006); D. J. Hwang, C. P. Grigoropoulos, and T. Y. Choi, J. Appl. Phys. 99, 083101 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    Physical Values, Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].Google Scholar
  29. 29.
    W. G. Roeterdink, L. B. F. Juurlink, O. P. H. Vaughan, et al., Appl. Phys. Lett. 82, 4190 (2003); H. Dachraoui and W. Husinsky, Phys. Rev. Lett. 97, 107601 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. A. Ionin
    • 1
  • S. I. Kudryashov
    • 1
  • S. V. Makarov
    • 1
  • P. N. Saltuganov
    • 1
  • L. V. Seleznev
    • 1
  • D. V. Sinitsyn
    • 1
  • A. R. Sharipov
    • 1
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations