JETP Letters

, Volume 96, Issue 6, pp 391–396 | Cite as

Boundary conditions for the junction of a normal metal with multiband superconductors with unusual types of superconducting pairing

Article

Abstract

The boundary conditions for the junction of a normal metal with multiband superconductors with unusual types of superconducting pairing have been obtained on the basis of the tight-binding equations. These boundary conditions have been obtained beyond the effective mass approximation. They make it possible to take into account the nonparabolic and anisotropic spectrum of the normal excitations in a superconductor and their multiband structure, as well as unusual types of symmetries of the superconducting order parameter. These boundary conditions have been used to calculate the conductivities of junctions of a normal metal with a high-temperature superconducting pnictide for different orientation angles of the interface with respect to the pnictide crystallographic axes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11448_2012_49_MOESM1_ESM.pdf (4.5 mb)
Supplementary material, approximately 4.47 MB.

References

  1. 1.
    I. I. Mazin, D. J. Singh, M. D. Johannes, et al., Phys. Rev. Lett. 101, 057003 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    A. Moreo, M. Daghofer, J. A. Riera, et al., Phys. Rev. B 79, 134502 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Tanaka and S. Kashiwaya, Phys. Rev. Lett. 74, 3451 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    V. M. Pudalov, T. E. Shanigina, Ya. G. Ponomarev, et al., in Nanophysics and Nanoelectronics, Proceedings of the 15th International Symposium, March 14–18, 2011, Nizhn. Novgorod, p. 226.Google Scholar
  6. 6.
    A. V. Burmistrova and I. A. Devyatov, JETP Lett. 95, 239 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    M. A. N. Araújo and P. D. Sacramento,, Phys. Rev. B 79, 1174529 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    I. B. Sperstad, J. Linder, and A. Sudbó, Phys. Rev. B 80, 144507 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    A. A. Golubov, A. Brinkman, Y. Tanaka, et al., Phys. Rev. Lett. 103, 077003 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    I. A. Devyatov, M. Yu. Romashka, and A. V. Burmistrova, JETP Lett. 91, 297 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    A. V. Burmistrova, T. Yu. Karminskaya, and I. A. Devyatov, JETP Lett. 93, 133 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    A. V. Burmistrova, I. A. Devyatov, M. Yu. Kupriyanov, et al., JETP Lett. 93, 203 (2011)].ADSCrossRefGoogle Scholar
  13. 13.
    W.-Q. Chen, F. Ma, Z.-Y. Lu, et al., Phys. Rev. Lett. 103, 207001 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    E. Berg, N. H. Lindner, and T. Pereg-Barnea, Phys. Rev. Lett. 106, 147003 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    S. Raghu, X.-L. Qi, C.-X. Liu, et al., Phys. Rev. B 77, 220503(R) (2008).ADSCrossRefGoogle Scholar
  16. 16.
    M. M. Korshunov and I. Eremin, Phys. Rev. B 78, 140509R (2008).ADSCrossRefGoogle Scholar
  17. 17.
    A. B. Svidzinskii, Spatially Inhomogeneous Problems of Superconductivity Theory (Nauka, Moscow, 1982) [in Russian].Google Scholar
  18. 18.
    Q.-G. Zhu and H. Kroemer, Phys. Rev. B 27, 3519 (1983).ADSCrossRefGoogle Scholar
  19. 19.
    A. V. Burmistrova and I. A. Devyatov, Supplemental files on http://www.jetpletters.ac.ru/ps/1982/article-29963.shtml.
  20. 20.
    G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).ADSCrossRefGoogle Scholar
  21. 21.
    T. Ando and H. Akera, Phys. Rev. B 40, 11619 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations