JETP Letters

, Volume 96, Issue 5, pp 303–307

Splitting of the electromagnetically induced transparency resonance on 85Rb atoms in strong magnetic fields up to the Paschen-Back regime

Optics and Laser Physics

Abstract

Electromagnetically induced transparency (EIT) resonance in strong magnetic fields of up to 1.7 kG has been investigated with the use of a 30-μm cell filled with an atomic rubidium vapor and neon as a buffer gas. The EIT resonance in the Λ system of the D1 line of 85Rb atoms has been formed with the use of two narrowband (∼1 MHz) 795-nm diode lasers. The EIT resonance in a longitudinal magnetic field is split into five components. It has been demonstrated that the frequencies of the five EIT components are either blue- or red-shifted with an increase in the magnetic field, depending on the frequency νP of the probe laser. In has been shown that in both cases the 85Rb atoms enter the hyperfine Paschen-Back regime in magnetic fields of >1 kG. The hyperfine Paschen-Back regime is manifested by the frequency slopes of all five EIT components asymptotically approaching the same fixed value. The experiment agrees well with the theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. D. Agap’ev, M. B. Gornyi, B. G. Matisov, et al., Phys. Usp. 36, 763 (1993).ADSCrossRefGoogle Scholar
  2. 2.
    R. Wynands and A. Nagel, Appl. Phys. B 68, 1 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    J. Vanier, Appl. Phys. B 81, 421 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    S. A. Zibrov, V. L. Velichansky, A. S. Zibrov, et al., JETP Lett. 82, 477 (2005).CrossRefGoogle Scholar
  6. 6.
    E. B. Aleksandrov, Phys. Usp. 53, 487 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    K. Motomura and M. Mitsunaga, J. Opt. Soc. Am. B 19, 2456 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    S. Knappe, P. Schwindt, V. Shah, et al., Opt. Express 13, 1249 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    A. Sargsyan, Y. Pashayan-Leroy, C. Leroy, et al., Appl. Phys. B: Lasers Opt. 105, 767 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    A. Sargsyan, M. G. Bason, D. Sarkisyan, et al., Opt. Spectrosc. 109, 529 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    G. Hakhumyan, A. Sargsyan, C. Leroy, et al., Opt. Express 18, 14577 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    A. Sargsyan, G. Hakhumyan, A. Papoyan, et al., Appl. Phys. Lett. 93, 021119 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    A. Sargsyan, A. V. Papoyan, D. Sarkisyan, et al., Eur. Phys. J.: Appl. Phys. 48, 20701 (2009).CrossRefGoogle Scholar
  14. 14.
    M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms: Understanding Light-Atom Interactions (Oxford Univ. Press, 2010).Google Scholar
  15. 15.
    E. B. Alexandrov, M. P. Chaika, and G. I. Khvostenko, Interference of Atomic States (Springer-Verlag, Berlin, 1993).CrossRefGoogle Scholar
  16. 16.
    B. A. Olsen, B. Patton, Y.-Y. Jau, et al., Phys. Rev. A 84, 063410 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    A. Sargsyan, G. Hakhumyan, C. Leroy, et al., Opt. Lett. 37, 1379 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Institute for Physical ResearchNational Academy of Sciences of ArmeniaAshtarak-2Armenia

Personalised recommendations