JETP Letters

, Volume 96, Issue 5, pp 308–312 | Cite as

Anomalous luminescence of impurity-bound excitons in lithium borate crystals doped with cerium ions

Condensed Matter

Abstract

The spectra and relaxation kinetics of the anomalous (τ < 10 ns) luminescence of Li6GdB3O9:Ce3+ crystals have been experimentally detected. The time-resolved vacuum ultraviolet spectroscopy study has shown that optical transitions at 6.2 eV, caused by the transfer of an electron from the 4f 1 ground state of Ce3+ to autoionizing states near the conduction band bottom of a crystal, lead to the formation of an impurity-bound exciton with the hole component localized on the 4f state of Ce3+ and the electron localized on states of the conduction band bottom. It has been found that the decay of such an exciton in Li6GdB3O9:Ce3+ occurs through radiative recombination, leading to fast luminescence at 4.25 eV. The energy threshold for the formation of the impurity-bound exciton has been determined. The distribution functions of elementary relaxations over the reaction rate constants H(k), which determine the relaxation kinetics and luminescence quenching processes, have been calculated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Pédrini, L. Zhang, C. Dujardin, et al., Radiat. Eff. Defect. Solid 150, 29 (1999).ADSCrossRefGoogle Scholar
  2. 2.
    A. N. Belsky, M. Kirm, V. Mikhailin, et al., in HASY-LAB Annual Report (Hamburg, 2001), p. 325.Google Scholar
  3. 3.
    P. Dorenbos, E. V. D. van Loef, C. W. E. van Eijk, et al., Phys. Rev. B: Cond. Matter 68, 125108(6) (2003).ADSGoogle Scholar
  4. 4.
    A. Bessiére, P. Dorenbos, C. W. E. van Eijk, et al., J. Phys.: Condens. Matter 16, 1887 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    A. Bessiére, P. Dorenbos, C. W. E. van Eijk, et al., J. Luminesc. 117, 187 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    M. D. Birowosuto, P. Dorenbos, C. W. E. van Eijk, et al., J. Phys.: Condens. Matter 18, 6133 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    A. N. Shekhovtsov, A. V. Tolmachev, M. F. Dubovik, et al., J. Cryst. Growth 242, 167 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    G. Zimmerer, Radiat. Meas. 42, 859 (2007).CrossRefGoogle Scholar
  9. 9.
    M. N. Berberan-Santos, E. N. Bodunov, and B. Valeur, Chem. Phys. 315, 171 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    I. N. Ogorodnikov, V. A. Pustovarov, S. I. Omel’kov, et al., Opt. Spectrosc. 102, 60 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    I. N. Ogorodnikov, N. E. Poryvai, I. N. Sedunova, et al., Opt. Spectrosc. 110, 266 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    I. N. Ogorodnikov, I. N. Sedunova, L. I. Isaenko, et al., Phys. Solid State 54, 485 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations