JETP Letters

, Volume 96, Issue 5, pp 336–341 | Cite as

Quantum key distribution on composite photons, polarization qutrits

  • S. P. Kulik
  • S. N. Molotkov
  • I. V. Radchenko
Quantum Information Science

Abstract

Polarization states of a photon are the most natural degrees of freedom for encoding classical information bits. The two-dimensional space of states associated with polarization degrees of freedom of the photon is insufficient for many problems of information transfer with quantum states. We propose to use the polarization degrees of freedom of composite states of photons (polarization qutrits) for secret cryptographic key distribution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. K. Wootters and W. H. Zurek, Nature 299, 802 (1982).ADSCrossRefGoogle Scholar
  2. 2.
    C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore, India, 1984), p. 175.Google Scholar
  3. 3.
    C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992).MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, et al., Rev. Mod. Phys. 81, 1301 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    L. Lydersen, C. Wiechers, C. Wittmann, et al., Nature Photon. 4, 686 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Phys. Rev. Lett. 88, 127902 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    D. N. Klyshko, Report on All-Union Workshop on Nonlinear Properties of Media, Chernogolovka, 1966; D. N. Klyshko, JETP Lett. 6, 23 (1967).Google Scholar
  8. 8.
    D. N. Klyshko, A. N. Penin, and B. F. Polkovnikov, JETP Lett. 11, 5 (1970).ADSGoogle Scholar
  9. 9.
    L. Mandel and E. Wolf, Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995; Fizmatlit, Moscow, 2000).Google Scholar
  10. 10.
    R. Renner, arXiv/quant-ph: 0512258.Google Scholar
  11. 11.
    J. L. Carter and M. N. Wegman, J. Comp. Syst. Sci. 18, 143 (1979).MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    C. H. Bennett, G. Brassard, C. Crepeau, and U. M. Maurer, IEEE Trans. Inf. Theory 41, 1915 (1995).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    M. Tomamichel and R. Renner, arXiv/quant-ph:10092015.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • S. P. Kulik
    • 1
  • S. N. Molotkov
    • 1
    • 2
    • 3
  • I. V. Radchenko
    • 4
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Academy of Cryptography of the Russian FederationMoscowRussia
  3. 3.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  4. 4.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations