JETP Letters

, Volume 96, Issue 5, pp 317–321

Structure of π- and 2π-Walls in Smectic films

  • P. V. Dolganov
  • V. K. Dolganov
  • P. Cluzeau
Condensed Matter


The structure of π- and 2π-walls in smectic films was reconstructed from optical reflectivity measurements. Investigations were made in free standing films of nonpolar Smectic-C and ferroelectric Smectic-C* liquid crystals. π-walls are observed in magnetic field and 2π-walls in electric field parallel to the film plane. For the first time the distribution of molecular orientation across the walls was determined. Peculiarities of the wall structure related to the anisotropy of the film elasticity were found. The structure of the walls is well described by the theory taking into account the anisotropy of two-dimensional elasticity of smectic films.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, Oxford, 1993).Google Scholar
  2. 2.
    P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge Univ. Press, Cambridge, 2000).Google Scholar
  3. 3.
    N. A. Clark and S. T. Lagerwal, Appl. Phys. Lett. 36, 89 (1980).CrossRefGoogle Scholar
  4. 4.
    R. Pindak, C. Y. Young, R. B. Meyer, and N. A. Clark, Phys. Rev. Lett. 45, 1193 (1980).ADSCrossRefGoogle Scholar
  5. 5.
    D. R. Link, J. E. Maclennan, and N. A. Clark, Phys. Rev. Lett. 77, 2237 (1996).ADSCrossRefGoogle Scholar
  6. 6.
    P. V. Dolganov, E. I. Demikhov, Y. Suzuki, and A. Fukuda, J. Exp. Theor. Phys. 95, 728 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    Y. Galerne and L. Liebert, Phys. Rev. Lett. 64, 906 (1990).ADSCrossRefGoogle Scholar
  8. 8.
    P. V. Dolganov and B. M. Bolotin, JETP Lett. 77, 429 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    P. V. Dolganov, B. M. Bolotin, and A. Fukuda, Phys. Rev. E 70, 041708 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    P. Pieranski, L. Bieliard, J.-Ph. Tournelles, et al., Physica A 194, 364 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    P. Cluzeau, M. Ismaili, A. Annakar, et al., Mol. Cryst. Liq. Cryst. 362, 185 (2001).CrossRefGoogle Scholar
  12. 12.
    P. V. Dolganov, E. I. Kats, V. K. Dolganov, and P. Cluzeau, JETP Lett. 90, 382 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    M.-H. Lu, K. A. Crandall, and C. Rosenblatt, Phys. Rev. Lett. 68, 3575 (1992).ADSCrossRefGoogle Scholar
  14. 14.
    T. Stoebe, P. Mach, and C. C. Huang, Phys. Rev. Lett. 73, 1384 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1964).Google Scholar
  16. 16.
    R. Stannarius, J. Li, and W. Weissflog, Phys. Rev. Lett. 90, 025502 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    J.-B. Lee, R. A. Pelcovits, and R. B. Meyer, Phys. Rev. E 75, 051701 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    Y. Galerne and R. Najjar, Phys. Rev. E 69, 031706 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    D. R. Link, N. Chattham, J. E. Maclennan, and N. A. Clark, Phys. Rev. E 71, 021704 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    A. Eremin, C. Bohley, and R. Stannarius, Eur. Phys. J. E 21, 57 (2006).CrossRefGoogle Scholar
  21. 21.
    A. Eremin, C. Bohley, and R. Stannarius, Phys. Rev. E 74, 040701(R) (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • P. V. Dolganov
    • 1
  • V. K. Dolganov
    • 1
  • P. Cluzeau
    • 2
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.CNRS, Centre de Recherche Paul PascalUniversité Bordeaux IPessacFrance

Personalised recommendations