JETP Letters

, Volume 96, Issue 4, pp 215–221 | Cite as

Cosmological constant: a lesson from the effective gravity of topological weyl media

  • G. Jannes
  • G. E. Volovik
Astrophysics and Cosmology


Topological matter with Weyl points, such as superfluid 3He-A, provide an explicit example where there is a direct connection between the properly determined vacuum energy and the cosmological constant of the effective gravity emerging in condensed matter. This is in contrast to the acoustic gravity emerging in Bose-Einstein condensates (S. Finazzi, S. Liberati, and L. Sindoni, Phys. Rev. Lett. 108, 071101 (2012); arXiv:1103.4841). The advantage of topological matter is that the relativistic fermions and gauge bosons emerging near the Weyl point obey the same effective metric and thus the effective gravity is more closely related to real gravity. We study this connection in the bi-metric gravity emerging in 3He-A, and its relation to the graviton masses, by comparison with a fully relativistic bi-metric theory of gravity. This shows that the parameter λ, which in 3He-A is the bi-metric generalization of the cosmological constant, coincides with the difference in the proper energy of the vacuum in two states (the nonequilibrium state without gravity and the equilibrium state in which gravity emerges) and is on the order of the characteristic Planck energy scale of the system. Although the cosmological constant λ is huge, the cosmological term T μν Λ itself is naturally non-constant and vanishes in the equilibrium vacuum, as dictated by thermodynamics. This suggests that the equilibrium state of any system including the final state of the Universe is not gravitating.


Cosmological Constant JETP Letter Cosmological Term Graviton Masse False Vacuum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Finazzi, S. Liberati, and L. Sindoni, Phys. Rev. Lett. 108, 071101 (2012); arXiv:1103.4841.ADSCrossRefGoogle Scholar
  2. 2.
    L. Sindoni, SIGMA 8, 027 (2012); arXiv:1110.0686.MathSciNetGoogle Scholar
  3. 3.
    C. Barceló, S. Liberati, and M. Visser, Living Rev. Rel. 8, 12 (2005).Google Scholar
  4. 4.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).zbMATHGoogle Scholar
  5. 5.
    A. A. Abrikosov and S. D. Beneslavskii, Sov. Phys. JETP 32, 699 (1971).ADSGoogle Scholar
  6. 6.
    A. A. Abrikosov, Phys. Rev. B 58, 2788 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011); arXiv:1105.5138.ADSCrossRefGoogle Scholar
  9. 9.
    V. Aji, Phys. Rev. B 85, 241101 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    M. A. H. Vozmediano, M. I. Katsnelson, and F. Guinea, Phys. Rep. 496, 109 (2010).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    A. Iorio, Ann. Phys. 326, 1334 (2011).MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    A. Iorio and G. Lambiase, Phys. Lett. B 716, 334 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    M. Cvetic and G. W Gibbons, Ann. Phys. 327, 2617 (2012).ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    P. Hořava, Phys. Rev. Lett. 95, 016405 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    M. Stone, Phys. Rev. B 85, 184503 (2012); arXiv:1201.4095.ADSCrossRefGoogle Scholar
  16. 16.
    T. Griffin, P. Hořava, and C. M. Melby-Thompson, J. High Energy Phys. 1205, 010 (2012); arXiv:1112.5660 [hep-th].ADSCrossRefGoogle Scholar
  17. 17.
    M. I. Katsnelson and G. E. Volovik, JETP Lett. 95, 411 (2012); arXiv:1203.1578 [cond-mat.str-el].ADSCrossRefGoogle Scholar
  18. 18.
    M. A. Zubkov, JETP Lett. 95, 476 (2012); arXiv:1204.0138.ADSCrossRefGoogle Scholar
  19. 19.
    A. Einstein, Autobiographical Notes, in Albert Einstein: Philosopher-Scientist, Ed. by P. A. Schilpp (Cambridge Univ. Press, Cambridge, 1949).Google Scholar
  20. 20.
    T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995); grqc/9504004.MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    T. Padmanabhan, Rept. Prog. Phys. 73, 046901 (2010); arXiv:0911.5004 [gr-qc].ADSCrossRefGoogle Scholar
  22. 22.
    B. L. Hu, Int. J. Mod. Phys. D 20, 697 (2011); arXiv:1010.5837 [gr-qc].ADSzbMATHCrossRefGoogle Scholar
  23. 23.
    G. E. Volovik, Int. J. Mod. Phys. D 15, 1987 (2006); grqc/0604062.MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 24.
    F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 77, 085015 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 78, 063528 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    F. R. Klinkhamer and G. E.Volovik, J. Phys.: Conf. Ser. 314, 012004 (2011); arXiv:1102.3152.ADSCrossRefGoogle Scholar
  27. 27.
    S. Liberati, S. Sonego, and M. Visser, Ann. Phys. 298, 167 (2002).MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    C. Barceló and G. Jannes, Found. Phys. 38, 191 (2008).MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. 29.
    M. F. Atiyah, R. Bott, and A. Shapiro, Topology 3 Suppl. 1, 3 (1964).MathSciNetGoogle Scholar
  30. 30.
    C. D. Froggatt and H. B. Nielsen, Origin of Symmetries (World Scientific, Singapore, 1991).CrossRefGoogle Scholar
  31. 31.
    G. E. Volovik, Lect. Notes Phys. 718, 31 (2007); condmat/0601372 [cond-mat.str-el].MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    A. A. Logunov and M. A. Mestvirishvili, Theor. Math. Phys. 65, 971 (1985).MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    D. G. Boulware and S. Deser, Phys. Rev. D 6, 3368 (1972).ADSCrossRefGoogle Scholar
  34. 34.
    S. S. Gershtein, A. A. Logunov, and M. A. Mestvirishvili, Theor. Math. Phys. 160, 1096 (2009); arXiv:0810.4393 [gr-qc].MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    J. B. Pitts and W. C. Schieve, Theor. Math. Phys. 151, 700 (2007); gr-qc/0503051.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    S. F. Hassan and R. A. Rosen, Phys. Rev. Lett. 108, 041101 (2012); arXiv:1106.3344 [hep-th].ADSCrossRefGoogle Scholar
  37. 37.
    S. F. Hassan and R. A. Rosen, J. High Energy Phys. 1202, 126 (2012); arXiv:1109.3515 [hep-th].ADSCrossRefGoogle Scholar
  38. 38.
    V. Baccetti, P. Martin-Moruno, and M. Visser, arXiv:1205.2158 [gr-qc].Google Scholar
  39. 39.
    S. V. Babak and L. P. Grishchuk, Int. J. Mod. Phys. D 12, 1905 (2003).MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. 40.
    G. E. Volovik, JETP Lett. 44, 498 (1986).ADSGoogle Scholar
  41. 41.
    G. E. Volovik, JETP Lett. 67, 698 (1998); condmat/9804078.ADSCrossRefGoogle Scholar
  42. 42.
    H. van Dam and M. G. Veltman, Nucl. Phys. B 22, 397 (1970).ADSCrossRefGoogle Scholar
  43. 43.
    V. I. Zakharov, JETP Lett. 12, 312 (1970).ADSGoogle Scholar
  44. 44.
    V. Emelyanov and F. R. Klinkhamer, Phys. Rev. D 86, 027302 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Low Temperature LaboratoryAalto University, School of Science and TechnologyAaltoFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations