JETP Letters

, Volume 96, Issue 2, pp 90–93 | Cite as

Schramm-Loewner evolution martingales in coset conformal field theory

  • A. Nazarov
Fields, Particles, and Nuclei


Schramm-Loewner evolution (SLE) and conformal field theory (CFT) are popular and widely used instruments to study critical behavior of two-dimensional models, but they use different objects. While SLE has natural connection with lattice models and is suitable for strict proofs, it lacks computational and predictive power of conformal field theory. To provide a way for the concurrent use of SLE and CFT, CFT correlation functions, which are martingales with respect to SLE, are considered. A relation between parameters of Schramm-Loewner evolution on coset space and algebraic data of coset conformal field theory is revealed. The consistency of this approach with the behavior of parafermionic and minimal models is tested. Coset models are connected with off-critical massive field theories and implications of SLE are discussed.


JETP Letter Conformal Field Theory Conformal Weight Primary Field Scharmm Loewner Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Schramm, Israel J. Math. 118, 221 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    J. L. Cardy, Ann. Phys. 318, 81 (2005); condmat/0503313.MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    S. Rohde and O. Schramm, Ann. Math. 161, 883 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    M. Bauer and D. Bernard, Phys. Rep. 432, 115 (2006).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    O. Schramm, arXiv: math/0602151 (2006).Google Scholar
  6. 6.
    H. Duminil-Copin and S. Smirnov, arXiv:1109.1549 (2011).Google Scholar
  7. 7.
    A. Belavin, A. Polyakov, and A. Zamolodchikov, Nucl. Phys. 241, 333 (1984).MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    J. Cardy, J. Phys. A: Math. Gen. 25, L201 (1992).MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    S. Smirnov, Compt. Rend. Acad. Sci. I: Math. 333, 239 (2001).zbMATHGoogle Scholar
  10. 10.
    A. Nazarov, J. Phys.: Conf. Ser. 343, 012085 (2012); arXiv:1112.4354; Scholar
  11. 11.
    R. Santachiara, Nucl. Phys. B 793, 396 (2008).MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    V. Fateev and A. Zamolodchikov, in Physics and Mathematics of Strings, Memorial Volume for Vadim Knizhnik (1990), p. 245.Google Scholar
  13. 13.
    T. Eguchi and S. Yang, Phys. Lett. B 224, 373 (1989).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    T. Hollowood and P. Mansfield, Phys. Lett. B 226, 73 (1989).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    R. Coldea, D. Tennant, E. Wheeler, et al., Science 327, 177 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    N. Makarov and S. Smirnov, in Proceedings of the 16th International Congress on Mathematical Physics, Ed. by P. Exner (World Scientific, Singapore, 2010), Vol. 1, p. 362.CrossRefGoogle Scholar
  17. 17.
    J. Fuchs, B. Schellekens, and C. Schweigert, Nucl. Phys. B 461, 371 (1996).MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    A. Schellekens and S. Yankielowicz, Nucl. Phys. B 334, 67 (1990).MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    J. Cardy, hep-th/0411189 (2004).Google Scholar
  20. 20.
    J. Cardy, Nucl. Phys. B 240, 514 (1984).ADSCrossRefGoogle Scholar
  21. 21.
    A. Gawdzki and A. Kupiainen, Phys. Lett. B 215, 119 (1988).MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    J. Figueroa-O’Farrill, ITP Stony Brook Preprint No. ITP-SB-89-41 (New York, 1989).Google Scholar
  23. 23.
    E. Bettelheim, I. Gruzberg, A. Ludwig, and P. Wiegmann, Phys. Rev. Lett. 95, 251601 (2005).MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    A. Alekseev, A. Bytsko, and K. Izyurov, Lett. Math. Phys. 97, 243 (2011); arXiv: 1012.3113.MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    M. Picco and R. Santachiara, Phys. Rev. Lett. 100, 15704 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    I. Bakas, Q. Park, and H. Shin, Phys. Lett. B 372, 45 (1996).MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    T. Hollowood, J. Miramontes, and Q. Park, Nucl. Phys. B 445, 451 (1995).MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Q. Park, Phys. Lett. B 328, 329 (1994).MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    M. Bauer, D. Bernard, and L. Cantini, J. Stat. Mech.: Theory Exp. 2009, P07037 (2009).MathSciNetCrossRefGoogle Scholar
  30. 30.
    J. Stevenson and M. Weigel, Eur. Phys. Lett. 95, 40001 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Department of High-Energy and Elementary Particle Physics, Faculty of Physics and Chebyshev Laboratory, Faculty of Mathematics and MechanicsSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations