Advertisement

JETP Letters

, Volume 96, Issue 1, pp 66–69 | Cite as

Statistics of rogue waves in computer experiments

  • V. E. Zakharov
  • R. V. Shamin
Nonlinear Dynamics

Abstract

Rogue waves have been studied in the exact simulation of complete hydrodynamic equations for an ideal fluid with a free surface. The statistical characteristics of rogue waves such as the occurrence intensity, average existence time, and maximum energy dissipation at collapse have been obtained in computer experiments.

Keywords

Surface Wave JETP Letter Computer Experiment Ideal Fluid Rogue Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean (Springer, 2009).Google Scholar
  2. 2.
    K. L. Henderson, D. H. Pelegrine, and J. W. Dold, Wave Motion 29, 341 (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    W. J. D. Baterman, C. Swan, and P. H. Taylor, J. Comput. Phys. 174, 277 (2001).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    V. E. Zakharov, A. I. Dyachenko, and O. A. Vasilyev, Eur. J. Mech. B: Fluids 21, 283 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    V. E. Zakharov, A. I Dyachenko, and A. O. Prokofiev, Eur. J. Mech. B: Fluids 25, 677 (2006).MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    V. E. Zakharov and A. I. Dyachenko, Eur. J. Mech. B: Fluids, Online Publ. Nov. 5, 2009.Google Scholar
  7. 7.
    A. I. Dyachenko and V. E. Zakharov, JETP Lett. 88, 307 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    V. E. Zakharov, A. I. Dyachenko, and R. V. Shamin, Eur. Phys. J. Spec. Top. 185, 113 (2010). DOI:10.1140/ epjst/e2010-01242-y.CrossRefGoogle Scholar
  9. 9.
    D. Chalikov, Phys. Fluids 21, 076602-1 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    V. E. Zakharov and R. V. Shamin, JETP Lett. 91, 62 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    R. V. Shamin, Computational Experiments in Simulation of Surface Waves in Ocean (Nauka, Moscow, 2008), p. 133 [in Russian].Google Scholar
  12. 12.
    R. V. Shamin, J. Math. Sci. 160, 537 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    R. V. Shamin, Dokl. Math. 73, 112 (2006).zbMATHCrossRefGoogle Scholar
  14. 14.
    R. V. Shamin, Sib. Zh. Vychisl. Mat. 9, 379 (2006).zbMATHGoogle Scholar
  15. 15.
    A. I. Zaitsev, A. E. Malashenko, and E. N. Pelinovskii, Fundam. Prikl. Gidrofiz. 4(4), 35 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  4. 4.Institute of Marine Geology and Geophysics, Far East BranchRussian Academy of SciencesYuzhno-SakhalinskRussia
  5. 5.Department of MathematicsUniversity of ArizonaTucsonUSA

Personalised recommendations