JETP Letters

, Volume 96, Issue 1, pp 49–55

Effect of the anisotropy of a conducting layer on the dispersion law of electromagnetic waves in layered metal-dielectric structures

Condensed Matter

Abstract

The dispersion laws of electromagnetic waves in layered periodic metal-dielectric structures with anisotropic metal layers have been theoretically analyzed. It has been found that the anisotropy of metal layers is responsible for the appearance of additional allowed energy bands for photons. It has been shown that these bands correspond to plasma (Langmuir) waves propagating in anisotropic metal layers of the structure. Conditions under which the directions of group and phase velocities of Langmuir waves coincide or are opposite have been determined. It has been shown that the penetration of the electromagnetic field of Langmuir waves into dielectric layers is exponentially weak and this field is primarily concentrated in metal layers, where it oscillates in the direction perpendicular to the plane of the layers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Kuzmiak and A. A. Maradudin, Phys. Rev. B 55, 7427 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    H. Contopanagos and E. Yablonovitch, J. Opt. Soc. Am. A 16, 2294 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    L. Esaki and R. Tsu, IBM J. Res. Developm. 14, 61 (1970).CrossRefGoogle Scholar
  4. 4.
    E. L. Ivchenko and G. E. Pikus, Superlattices and Other Heterostructures. Symmetry and Optical Phenomena (Springer, Berlin, Heidelberg, 1997).CrossRefMATHGoogle Scholar
  5. 5.
    L. A. Falkovsky, JETP Lett. 92, 348 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Kamihara, H. Hiramatsu, M. Hirano, et al., J. Am. Chem. Soc. 128, 10012 (2006).CrossRefGoogle Scholar
  7. 7.
    P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).ADSCrossRefGoogle Scholar
  9. 9.
    N. Gibbons and J. Baumberg, Phys. Rev. B 85, 165422 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    N. Lepeshkin, A. Schweinsberg, G. Piredda, et al., Phys. Rev. Lett. 93, 123902 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (Pergamon, London, 1970).Google Scholar
  12. 12.
    A. A. Bogdanov and R. A. Suris, Phys. Rev. B 83, 125316 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    T. Slipchenko, D. Kadygrob, D. Bogdanis, et al., Phys. Rev. B 84, 224512 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    R. F. Kazarinov and R. A. Suris, Sov. Phys. Semicond. 5, 707 (1971).Google Scholar
  15. 15.
    R. F. Kazarinov and R. A. Suris, Sov. Phys. Semicond. 6, 120 (1972).Google Scholar
  16. 16.
    A. P. Vinogradov, A. V. Dorofeenko, and I. A. Nechepurenko, Metamaterials 4, 181 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    J.-L. Zhang, H.-T. Jiang, S. Enoch, et al., Appl. Phys. Lett. 92, 053104 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    P. Yeh, J. Opt. Soc. Am. 69, 742 (1979).ADSCrossRefGoogle Scholar
  19. 19.
    I. Shadrivov, A. Sukhorukov, and Y. Kivshar, Phys. Rev. Lett. 95, 193903 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, et al., Phys. B: Condens. Matter 394, 277 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    I. I. Smolyaninov and E. E. Narimanov, Phys. Rev. Lett. 105, 067402 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Nanotechnology Research and Education Centre St. Petersburg Academic UniversityRussian Academy of SciencesSt. PetersburgRussia
  3. 3.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations