Advertisement

JETP Letters

, Volume 95, Issue 12, pp 613–617 | Cite as

Metamaterials with tunable nonlinearity

  • A. P. Slobozhanyuk
  • P. V. Kapitanova
  • I. V. Shadrivov
  • P. A. Belov
  • Yu. S. Kivshar
Optics and Laser Physics

Abstract

A new approach to the implementation of electromagnetic metamaterials with tunable nonlinearity in the microwave range has been proposed. The characteristics of a split ring resonator equipped with a varactor diode to ensure a nonlinear response and a photodiode to supply a dc bias voltage depending on the illumination intensity have been examined. It has been shown that an increase in the illumination intensity shifts the resonance response toward lower frequency and an increase in the power of the exciting signal shifts the resonance response toward higher frequency.

Keywords

Resonance Frequency JETP Letter Ring Resonator Illumination Intensity Split Ring Resonator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. G. Veselago, Sov. Phys. Solid State 9, 2244 (1967).Google Scholar
  2. 2.
    J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).ADSCrossRefGoogle Scholar
  3. 3.
    J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Technol. 47, 2075 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    P. Markos and C. M. Soukoulis, Phys. Rev. E 65, 036622 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    D. R. Smith, W. Padilla, D. C. Vier, et al., Phys. Rev. Lett. 84, 4184 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    C. G. Parazzoli, R. B. Greegor, K. Li, et al., Phys. Rev. Lett. 90, 107401 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    N. Engheta and R. W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Explorations (Wiley, 2006).Google Scholar
  8. 8.
    D. R. Smith, W. J. Padilla, D. C. Vier, et al., Phys. Rev. Lett. 84, 4184 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, Appl. Phys. Lett. 78, 489 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    J. Huangfu, L. Ran, H. Chen, et al., Appl. Phys. Lett. 84, 1537 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    V. A. Podolsky, A. K. Sarychev, and V. M. Shalaev, Opt. Express 11, 735 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    R. C. McPhedran, I. V. Shadrivov, B. T. Kuhlmey, and Yu. S. Kivshar, NPG Asia Mater. 3, 100 (2011)CrossRefGoogle Scholar
  13. 13.
    I. V. Shadrivov, S. K. Morrison, and Yu. S. Kivshar, Opt. Express 14, 9344 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    P. V. Kapitanova, S. I. Maslovski, I. V. Shadrivov, et al., Appl. Phys. Lett. 99, 251914 (2011).CrossRefGoogle Scholar
  15. 15.
    A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, Phys. Rev. Lett. 91, 037401 (2003).ADSCrossRefGoogle Scholar
  16. 16.
    D. A. Powell, I. V. Shadrivov, Yu. S. Kivshar, and M. V. Gorkunov, Appl. Phys. Lett. 91, 144107 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, Opt. Express 16, 16058 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    D. Wang, L. Ran, H. Chen, et al., Appl. Phys. Lett. 91, 164101 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    I. V. Shadrivov, A. B. Kozyrev, D. W. van der Weide, and Yu. S. Kivshar, Opt. Express 16, 20266 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    D. Huang, E. Poutrina, and D. R. Smith, Appl. Phys. Lett. 96, 104104 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    R. Marques, F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications (Wiley-Interscience, New York, 2008).Google Scholar
  22. 22.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics, 3rd ed. (Pergamon, Oxford, 1976).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. P. Slobozhanyuk
    • 1
  • P. V. Kapitanova
    • 1
  • I. V. Shadrivov
    • 1
    • 3
  • P. A. Belov
    • 1
    • 2
  • Yu. S. Kivshar
    • 1
    • 3
  1. 1.National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  2. 2.Queen Mary University of LondonLondonUK
  3. 3.Nonlinear Physics CenterAustralian National University, ACTCanberraAustralia

Personalised recommendations