Advertisement

JETP Letters

, Volume 95, Issue 11, pp 575–580 | Cite as

Surface acoustic wave controlled charge dynamics in a thin InGaAs quantum well

  • F. J. R. SchüleinEmail author
  • J. Pustiowski
  • K. Müller
  • M. Bichler
  • G. Koblmüller
  • J. J. Finley
  • A. Wixforth
  • H. J. Krenner
Condensed Matter

Abstract

We experimentally study the optical emission of a thin quantum well and its dynamic modulation by a surface acoustic wave (SAW). We observe a characteristic transition of the modulation from one maximum to two maxima per SAW cycle as the acoustic power is increased which we find in good agreement with numerical calculations of the SAW controlled carrier dynamics. At low acoustic powers the carrier mobilities limit electron-hole pair dissociation, whereas at high power levels the induced electric fields give rise to efficient acousto-electric carrier transport. The direct comparison between the experimental data and the numerical simulations provide an absolute calibration of the local SAW phase.

Keywords

GaAs JETP Letter Quantum Well Surface Acoustic Wave Acoustic Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Wixforth, J. Scriba, M. Wassermeier, et al., Phys. Rev. B 40, 7874 (1989).ADSCrossRefGoogle Scholar
  2. 2.
    M. Rotter, A. V. Kalameitsev, A. O. Govorov, et al., Phys. Rev. Lett. 82, 2171 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    I. V. Kukushkin, J. H. Smet, V. W. Scarola, et al., Science 324, 1044 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    M. Metcalfe, S. M. Carr, A. Muller, et al., Phys. Rev. Lett. 105, 037401 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    D. A. Fuhrmann et al., Nature Photon. 5, 605 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    C. Rocke, S. Zimmermann, A. Wixforth, et al., Phys. Rev. Lett. 78, 4099 (1997).ADSCrossRefGoogle Scholar
  7. 7.
    C. Wiele et al., Phys. Rev. A 58, R2680 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    F. Alsina, P. V. Santos, H.-P. Schönherr, et al., Phys. Rev. B 66, 165330 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    J. B. Kinzel, D. Rudolph, M. Bichler, et al., Nano Lett. 11, 1512 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    F. Alsina, P. V. Santos, R. Hey, et al., Phys. Rev. B 64, 041304 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    F. Alsina, P. V. Santos, H.-P. Schönherr, et al., Phys. Rev. B 67, 161305 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    A. García-Cristóbal, A. Cantarero, F. Alsina, and P. V. Santos, Phys. Rev. B 69, 205301 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    H. J. Krenner, et al., New J. Phys. 7, 184 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    M. Rotter, C. Rocke, S. Böhm, et al., Appl. Phys. Lett. 70, 2097 (1997).ADSCrossRefGoogle Scholar
  15. 15.
    D. A. Fuhrmann, H. J. Krenner, A. Wixforth, et al., J. Appl. Phys. 107, 093717 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    S. Völk, F. Knall, F. J. R. Schülein, et al., Appl. Phys. Lett. 98, 023109 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    S. Völk, F. J. R. Schülein, F. Knall, et al., Nano Lett. 10, 3399 (2010.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • F. J. R. Schülein
    • 1
    • 2
    Email author
  • J. Pustiowski
    • 1
    • 2
  • K. Müller
    • 3
  • M. Bichler
    • 3
  • G. Koblmüller
    • 3
  • J. J. Finley
    • 3
  • A. Wixforth
    • 1
    • 2
  • H. J. Krenner
    • 1
    • 2
  1. 1.Lehrstuhl für Experimentalphysik 1 and Augsburg Centre for Innovative Technologies (ACIT)Universität AugsburgAugsburgGermany
  2. 2.Center for NanoScience CeNSMunichGermany
  3. 3.Walter Schottky Institut and Physik DepartmentTechnische Universitat MünchenGarchingGermany

Personalised recommendations