Advertisement

JETP Letters

, Volume 95, Issue 10, pp 544–548 | Cite as

Bose analogs of the MIT bag model of hadrons in coherent precession

  • S. Autti
  • V. B. Eltsov
  • G. E. Volovik
Methods of Theoretical Physics

Abstract

It has recently been demonstrated that magnon condensation in the trap exhibits the phenomenon of self-localization [1]. When the number of magnons in the textural trap increases, they drastically modify the profile of the gap and highly increase its size. The trap gradually transforms from the initial harmonic one to the box with walls almost impenetrable for magnons. The resulting texture-free “cavity” filled with the magnon condensate wavefunction becomes the bosonic analog of the MIT bag, in which hadron is seen as a cavity surrounded by the QCD vacuum, in which the free quarks are confined in the ground or excited state. Here, we consider the bosonic analog of the MIT bag with quarks on the ground and excited levels.

Keywords

JETP Letter Spin Orbit Interaction Bose Condensate Free Quark Electron Bubble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Autti, Yu. M. Bunkov, V. B. Eltsov, et al., Phys. Rev. Lett. 108, 145303 (2012); arXiv:1002.1674.ADSCrossRefGoogle Scholar
  2. 2.
    A. Chodos, R. L. Jaffe, K. Johnson, et al., Phys. Rev. D 9, 3471 (1974); A. Chodos, R. L. Jaffe, K. Johnson, and C. B. Thorn, Phys. Rev. D 10, 2599 (1974).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    R. L. Jaffe, Phys. Rev. D 15, 267 (1977); Phys. Rev. D 15, 281 (1977).ADSCrossRefGoogle Scholar
  4. 4.
    D. Strottman, Phys. Rev. D 20, 748 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    M. M. Salomaa and G. A. Williams, Phys. Rev. Lett. 47, 1730 (1981); I. F. Silvera, J. Blanchfield, and J. Tempere, Phys. Status Solidi B 237, 274 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    Yu. M. Bunkov and G. E. Volovik, J. Phys.: Condens. Matter 22, 164210 (2010); arXiv:1003.4889.ADSCrossRefGoogle Scholar
  7. 7.
    L. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Clarendon, Oxford, 2003).zbMATHGoogle Scholar
  8. 8.
    M. Kupka and P. Skyba, Phys. Lett. A 317, 324 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    Yu. M. Bunkov, J. Low Temp. Phys. 138, 753 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    E. S. Fraga and L. F. Palhares, arXiv:1201.5881.Google Scholar
  11. 11.
    Yu. M. Bunkov, V. V. Dmitriev, Yu. M. Mukharskiy, et al., Europhys. Lett. 8, 645 (1989).ADSCrossRefGoogle Scholar
  12. 12.
    Yu. M. Bunkov, V. S. Lvov, and G. E. Volovik, JETP Lett. 83, 530 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    Yu. M. Bunkov, V. S. Lvov, and G. E. Volovik, JETP Lett. 84, 289 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    R. Friedberg, T. D. Lee, and A. Cirlin, Phys. Rev. D 13, 2739 (1976).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Yu. M. Bunkov and G. E. Volovik, Phys. Rev. Lett. 98, 265302 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • S. Autti
    • 1
  • V. B. Eltsov
    • 1
  • G. E. Volovik
    • 1
    • 2
  1. 1.Low Temperature Laboratory, School of Science and TechnologyAalto UniversityAaltoFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations